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Abstract

When estimating integrated volatilities based on high-frequency data, sim-

plifying assumptions are usually imposed on the relationship between the obser-

vation times and the price process. In this paper, we establish a central limit

theorem for the Realized Volatility in a general endogenous time setting. We
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also establish a central limit theorem for the tricity under the hypothesis that

there is no endogeneity, based on which we propose a test and document that

this endogeneity is present in financial data.

Keywords: bias-correction, continuous semimartingale, discrete observa-

tion, efficiency, endogeneity, Itô process, realized volatility, stable convergence.
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1 Introduction

An important development in financial econometrics has been an asymptotic approach

for inference on integrated (squared) volatility as estimated by realized variance. Sub-

stantial progress has been made on infill asymptotic theory to take advantage of the

increasing availability of high frequency data. The earlier results in this direction

were in probability theory (Jacod (1994), Jacod and Protter (1998)) while Barndorff-

Nielsen and Shephard (2001, 2002) have been path-breaking for introducing this theory

in econometrics. To be specific, the relevant asymptotic theory is based on two con-

vergence results for an Itô process dXt = µtdt + σtdWt (with Wt Wiener process)

observed at times tn,i, i = 0, 1, . . . , N, in the time interval [0, 1], where n characterizes

the observation frequency, and N = Nn, which may be random, stands for the actual

number of observations before time 1. One can think of n to be the expected number

of observations per period or something similar. In the non-endogenous case, i.e., when

observation times are independent of the price process, without loss of generality, we

can and we will take n = N . More generally, if one assumes that N/n has a (possibly

random) probability limit F when n goes to infinity,1 we will be able to establish a

feasible asymptotic theory in terms of N , see Theorem 1. The process Xt must be un-

derstood as a log-price so that ∆Xtn,i
:= Xtn,i

−Xtn,i−1
is the continuously compounded

rate of return over the corresponding time interval. The state of knowledge regarding

asymptotic behavior of realized variance of high-frequency returns is then twofold.

First, if the observation times tn,i are stopping times such that the mesh of the

partition max
i

∆tn,i := maxi(tn,i − tn,i−1) goes to zero in probability, then the realized

1This is a natural assumption in view of our examples, and also from renewal theory type consid-
erations; see, for example, Ross (1996).
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variance [X,X]t =
∑

tn,i≤t ∆X2
tn,i

is a consistent estimator of the quadratic variation

〈X,X〉t =
∫ t

0
σ2
sds.

Second, if the times tn,i’s are independent of the X process, and under some as-

sumptions on the generating process of the times tn,i (see Mykland and Zhang (2006)),

namely, if the so-called “quadratic variation of time” processes converges,

lim
n→∞

N
∑
tn,i≤t

∆tn,i
2 = Ht, (1)

where Ht is an adapted process,2 then N1/2([X,X]t − 〈X,X〉t) is asymptotically a

mixture of normals whose mixture component is the variance coefficient equal to

2
∫ t

0
σ4
s dHs. It is also known that in this case

∫ t
0
σ4
s dHs is consistently estimated

by

N

3
[X,X,X,X]t =

N

3

∑
tn,i≤t

∆X4
tn,i
, (2)

(Barndorff-Nielsen and Shephard (2002))3. In the equidistant case, i.e., when tn,i =

i/n, (1) holds with Ht = t. The main intuition is that the Itô process X is locally

conditionally Gaussian and thus features a kurtosis coefficient equal to 3.

The equidistant case can also be generalized by using “time change” (Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008)). This induces some degree of endo-

geneity in the times, but not enough to induce the kind of bias we shall discuss here.

Further generalizations of random times are given by Hayashi, Jacod, and Yoshida

(2011) and Phillips and Yu (2007), but also when there is no asymptotic bias.

2Here and in the sequel, when times are assumed to be independent of the process Xt, one may
assume that the times are measurable with respect to the time zero sigma-field.

3 For readability, we shall refer to both (2) and the unscaled version [X,X,X,X]t as quarticity.
The same will apply to the tricity, introduced below in (3).
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A striking feature of these results is that the tricity

[X,X,X]t =
∑
tn,i≤t

∆X3
tn,i

(3)

never comes into the picture. The key reason for that is that, even when conve-

niently scaled by N1/2, this quantity generally vanishes asymptotically. To see this,

first note that with constant volatility σt = σ, µt = 0, and regular deterministic sam-

pling tn,i = i/n, we have N = n and

N1/2[X,X,X]t = n1/2σ3
∑
tn,i≤t

(Wtn,i
−Wtn,i−1

)3 =L σ
3 1

n

[nt]∑
i=1

Z3
i ,

where the Zi are i.i.d. standard normal. Thus, by the law of large numbers,

lim
n→∞

N1/2[X,X,X]t = 0. (4)

By a standard predictability argument, the property (4) remains clearly true when

considering a stochastic volatility process σt in the context of regular deterministic

sampling. It is in particular worth stressing that the well-documented skewness in stock

returns as introduced by leverage effect (non-zero instantaneous correlation between

σt and Wt) does not bring a non-zero limit for N1/2[X,X,X]t (see, e.g., Mykland and

Zhang (2009), Example 3, p. 1414-16). Since stochastic volatility can be subsumed into

a random time change, this remark also implies that even random sampling times drawn

according to a fixed (i.e., independent of n) random time change (see e.g. Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008)) will not destroy the result (4). The same

applies to the results of Hayashi, Jacod, and Yoshida (2011) and Phillips and Yu (2007).

A maintained assumption in their setting (see use of assumption (C) in Hayashi, Jacod,
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and Yoshida (2011)) is that higher order conditional moments of ratios
Xtn,i−Xtn,i−1

tn,i−tn,i−1

can be computed as if the random time intervals (tn,i − tn,i−1) were independent from

the Brownian motion W . Then, we have locally a zero conditional skewness and a

conditional kurtosis equal to 3, implying that again the tricity N1/2[X,X,X]t has a

zero-limit and the limit of quarticity N
3

[X,X,X,X]t coincides with
∫ t

0
σ4
s dHs. Note

that this assumption (C) is indeed exactly what it takes to be able to write down

a likelihood function for a diffusion process irregularly sampled in time by simply

plugging the random times into the diffusion transition density function. A contrario,

we call endogeneity of time a situation in which randomness in observation times does

matter because it implies a non-zero limit for tricity N1/2[X,X,X]t and/or a limit for

quarticity N
3

[X,X,X,X]t that does not coincide anymore with
∫ t

0
σ4
s dHs .

The focus of interest of this paper are the relevant changes to make in the limit

distribution of the normalized estimation error N1/2 ([X,X]t − 〈X,X〉t) to properly

take into account the aforementioned effects of time endogeneity. According to our

main theoretical result, the change is threefold:

First, when the processX has a non-zero drift µ, the non-zero limit forN1/2[X,X,X]t

will imply a non-zero mean for the asymptotic distribution of the normalized error

N1/2 ([X,X]t − 〈X,X〉t).

Second, even when the process X has no drift, the asymptotic distribution of the

normalized error entails a term that we can call “bias” since it can be consistently

estimated for higher order improvements of our estimator of quadratic variation. Up

to the drift-induced bias, the total asymptotic mean squared error is still equal to the

limit of 2N
3

[X,X,X,X]t but is now decomposed as the sum of a squared bias term and

a residual variance. Estimating and eventually subtracting the estimated bias term
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will allow to get an estimator more accurate than the usual realized variance since it

reaches the efficiency bound given by the aforementioned residual variance. We then

take advantage of the endogeneity bias for an improved estimator of quadratic variation

if and only if the limit of the tricity N1/2[X,X,X]t is not zero.

Third, it must be kept in mind that the total mean squared error, while still given (in

the no-drift case) by two thirds of the limit of the normalized quarticity N [X,X,X,X]t,

is no longer necessarily equal to 2
∫ t

0
σ4
s dHs.

The bottom-line is that consistently estimating the aforementioned bias and vari-

ance should allow taking advantage of the informational content of endogenous sam-

pling times to improve upon the common accuracy of volatility estimators. While a

similar issue had already been addressed by Duffie and Glynn (2004) and Aı̈t-Sahalia

and Mykland (2003) (resp. Renault and Werker (2011)) in a parametric (resp. semi-

parametric) context, this paper is the first to propose a model free approach.

A related result has just been arrived at, independently and concurrently, in a very

nice paper by Fukasawa (2010b). (Fukasawa (2010a) considered the special case when

the observation times are passage times like in Examples 4 and 6 below, and proved a

CLT for realized volatility.) A major difference between the main results in Fukasawa

(2010b) and our CLT (Theorem 1 below) lies in how the main assumptions are imposed.

In Fukasawa (2010b), the main assumptions (Condition 3.5 therein) are put on the

increments of the martingale components of the price process, and these need to be

valid locally (for “spot” conditional moments). In our CLT, the main assumptions are

put on the (observable) observation time process and on integrated moments of the

log-returns. In terms of estimating the bias and variance in the CLT, Fukasawa (2010b)

discusses the constant skewness case. We illustrate how one can estimate the bias and
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variance in the general case using the blocking method as proposed by Mykland and

Zhang (2009), and use them to further build confidence intervals, see Sections 4.1 and 5

for more details.

On the empirical side, the paper shows that this endogeneity of time is actually

present in the financial data. We use a large set of days for providing compelling evi-

dence that the daily quantity limn→∞N
1/2[X,X,X]1 is not zero. limn→∞N

1/2[X,X,X]1

can actually be interpreted in terms of a measure of covariance between process and

time, see Remark 3.

As extensively discussed by Renault and Werker (2011), a model-free measurement

of the significant correlation between volatility and duration (between transactions or

quote changes) is important both for economic theory of financial markets and for

further developments on the estimation of continuous time processes in finance. Statis-

tical evidence that this correlation is actually negative confirms the common wisdom

that more news coming into the markets will simultaneously bring more volatility and

more frequent transactions or quote changes. The mere fact that this correlation is

not zero implies that a diffusion model observed with such random times ought not be

estimated by simply plugging the random dates into the diffusion transition density

function. Even a discrete time GARCH model with random time stamps should take

this correlation into account by contrast with the currently available models (Gram-

mig and Wellner (2002), Meddahi, Renault, and Werker (2006)). The continuous time

framework should actually help to provide structural underpinnings to the GARCH

approach to high frequency data proposed by Engle (2000).

The main theorem on the resulting new decomposition of the asymptotic mean

squared error for quadratic variation estimation is developed in Section 2. This is
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done in the simplest case without microstructure noise. Theoretical illustrations are

provided in Section 3. In Section 4, we devise a CLT for the tricity, which we use to

construct a test for the null hypothesis of non-endogeneity of the times. A simulation

study is carried out in Section 5 and empirical results in Section 6. The proof of the

main theorem is in the Appendix.

2 Main Result

We use the standard Itô process model for the log-price X = (Xt):

dXt = µt dt+ σt dWt, (5)

where Wt is a Wiener process, µ and σ take values in D[0, 1] (the space of real-valued

functions on [0, 1] that are right continuous and have left limits (càdlàg)), and further-

more σt is strictly positive. The target of inference is

〈X,X〉t =

∫ t

0

σ2
s ds. (6)

Definition 1. (Stable Convergence.) Suppose that Xt, µt, and σt are adapted to

filtration (Ft). Let Zn be a sequence of F1-measurable random variables, We say that

Zn converges stably in law to Z as n → ∞ if Z is measurable with respect to an

extension of F1 so that for all A ∈ F1 and for all bounded continuous function g,

E(1Ag(Zn))→ E(1Ag(Z)) as n→∞, where 1A is the indicator function of A.

Since we consider convergence of processes in D[0, 1], continuity of test functions g

is normally defined with respect to the Skorokhod topology on this space. However,
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since all our limits are in C[0, 1], we can also take continuity to be given by the sup-

norm, cf. Chapter VI of Jacod and Shiryaev (2003). For further discussion of stable

convergence, see Rényi (1963), Aldous and Eagleson (1978), Chapter 3 (p. 56) of Hall

and Heyde (1980), Rootzén (1980) and Section 2 (p. 169-170) of Jacod and Protter

(1998).

Theorem 1. Suppose that µt and σ2
t are adapted to a filtration (Ft), integrable, locally

bounded, and that inft∈(0,1] σt > 0 almost surely. Also assume4 that for some ε > 0,

max
i

∆tn,i = op(n
−( 2

3
+ε)). (7)

Further assume that (for all t)

n[X,X,X,X]t
p→
∫ t

0

ũsσ
4
s ds and

n1/2[X,X,X]t
p→
∫ t

0

ṽsσ
3
s ds,

where [X,X,X,X]t and [X,X,X]t are defined in (2) and (3) respectively, and ũtσ
4
t ,

ṽtσ
3
t and ṽ2

t σ
4
t are integrable. Finally, assume that the filtration (Ft) is generated by

finitely many Brownian motions. Then, stably in law as n→∞:

n1/2 ([X,X]t − 〈X,X〉t)→
2

3

∫ t

0

ṽsσsdXs︸ ︷︷ ︸
asymptotic bias

+

∫ t

0

√
2

3
ũs −

(
2

3
ṽs

)2

σ2
s dBs (8)

where Bt is a Brownian-motion independent of the underlying σ-field. In particular, if

4Assumption (7) weakens the condition that maxi ∆tn,i = Op(n
−1), which has been common in

the literature. For example, our assumption permits times to be generated as a Poisson type point
process while still including the earlier more restrictive assumption.
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N/n
p→F for some (positive) random variable F , then

N1/2 ([X,X]t − 〈X,X〉t)→
2

3

∫ t

0

vsσsdXs︸ ︷︷ ︸
asymptotic bias

+

∫ t

0

√
2

3
us −

(
2

3
vs

)2

σ2
s dBs, (9)

where vs =
√
F ṽs and us = Fũs are such that

N [X,X,X,X]t
p→
∫ t

0

usσ
4
s ds and (10)

N1/2[X,X,X]t
p→
∫ t

0

vsσ
3
s ds. (11)

Observe that even if F 6∈ Ft, the (stochastic) integrals on the RHS of (9) still

make sense because they are multiples of the random variable
√
F and the (stochastic)

integrals on the RHS of (8).

Remark 1. In practice, choosing n to be, say, 1000 or 2000, does not make a difference

in applying either (8) or (9), because a multiple of n leads to multiples of finite sample

estimates of (ũs, ṽs) or (us, vs), and the multiples cancel.

This new result does not change the integrated variance (quadratic variation) of the

limiting process, which remains (2/3)
∫ t

0
usσ

4
sds. It does, however, reapportion some of

this quadratic variation from asymptotic variance to asymptotic mean.

Remark 2. If the coefficients µt, σt, ut and vt are independent of the driving Brownian

motion W , then we can use an alternative form of convergence, which is conditional

on the coefficients. In this case, the limit reduces to a normal distribution with mean

2
3

∫ t
0
vsσsµsds and variance (2/3)

∫ t
0
usσ

4
sds. Hence, if µt ≡ 0, we are back to the

standard result. However, if µt is nonzero, this limit is infeasible. We are thus better
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off using the stable convergence in Theorem 1.

Remark 3. As discussed in the introduction, there is a tight connection between

endogeneity of observation times (non-zero covariance between price process and time)

and a non-zero probability limit of tricity. To see this, let us assume that σ2
t itself is

an Itô process. The connection is then that:

n1/2
∑
tn,i≤t

∆tn,i∆Xtn,i

p→
∫ t

0
ṽsσsds

3
, hence N1/2

∑
tn,i≤t

∆tn,i∆Xtn,i

p→
∫ t

0
vsσsds

3
. (12)

This result is shown in Appendix A.2.

Remark 4. (Jumps, Bi-and Multipower, Strong Representation.) In the case of finitely

many jumps, these can be removed as in Mancini (2001) and Lee and Mykland (2008).

Since the jumps are removed for large n, our results go through unchanged. The

infinitely many jumps case is complex and beyond the scope of this paper.

An alternative approach to jumps makes use of bi- and multipower variation (Barndorff-

Nielsen and Shephard (2004), Barndorff-Nielsen et al. (2006), Barndorff-Nielsen et al.

(2006)), which can directly estimate volatility in a way that is robust to jumps. An effi-

cient block based theory is provided in Mykland, Shephard and Sheppard (2012). The

latter paper shows a strong approximation between multipower and realized volatil-

ity, see Theorem 4 (p. 12) of the paper. Under suitable regularity conditions, this

strong representation will generalize to our setting of endogenous times.5 One can

then proceed as in the transition from Theorem 4 to Theorem 5 in Mykland, Shephard

and Sheppard (2012), to obtain that the blocked multipower variation has the same

asymptotic distribution as provided in our Theorem 1. This result is thus a corollary

5The volatility of volatility term in Theorem 4 of Mykland, Shephard and Sheppard (2012) must

be replaced by an Op(n
3
2−β max ∆tn,i) term, but for β close enough to 1, the merger with our current

Theorem 1 goes through.
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to the current theorem and to a slight extension of the other paper.

Remark 5. An interesting open question concerns the extension to multivariate pro-

cesses. If the observation times are the same for all the dimensions, this extension

is straightforward. However, a more realistic set of assumptions would involve en-

dogenous and also asynchronous times. As is known from the literature on exogenous

times, this is a complicated problem. See, for example, Hayashi and Yoshida (2005),

and other work by the same authors. See also Christensen, Podolskij and Vetter (2011)

and Zhang (2011) for the case with microstructure noise.

Remark 6. The paper does not study the case with microstructure noise, and in im-

plementation we have relied on sparse sampling, which is conventional in large parts of

the literature. The effect of microstructure noise on realized volatility itself is similar

to that of Section 2 of Zhang, Mykland and Aı̈t-Sahalia (2005) (ZMA), with the ad-

justment that the right hand side of equation (25) in ZMA has to be modified to have

the distribution of the current Theorem 1. Proposition 1 in ZMA is modified similarly.

Approaches to dealing with microstructure noise through modification of realized

volatility include (in the exogenous-time case) Zhang, Mykland and Aı̈t-Sahalia (2005),

Zhang (2006), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), Jacod, Li,

Mykland, Podolskij, and Vetter (2009), and Xiu (2010). We do not know how these

procedures work under endogenous time. The work of Robert and Rosenbaum (2010,

2012) provides a different angle on microstructure noise, and is discussed in Example 7

below.

Theorem 1 suggests an improvement of the classical estimator [X,X]t for 〈X,X〉t
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by computing a “bias corrected” estimator:

[X,X]BCRt = [X,X]t −
2

3
√
N

( ̂∫ t

0

vsσsdXs

)
n

where

(
̂∫ t

0
vsσsdXs

)
n

would be a consistent estimator (when n → ∞) of
∫ t

0
vsσsdXs.

An example of such a consistent estimator will be given in Section 5.1. Then, the new

normalized estimation error N1/2
(
[X,X]BCRt − 〈X,X〉t

)
is asymptotically a mixture of

normals whose mixture component is the variance coefficient equal to 2
3

∫ t
0

(
us − 2

3
v2
s

)
σ4
sds.

To understand that this variance coefficient is an efficiency bound, one may refer to

the known result that an efficient Generalized Method of Moment estimator (GMM)

reaches the semiparametric efficiency bound. More precisely, let us consider the simple

case of estimation of the variance σ2 of some random variable Z from an i.i.d. sample

Z1, ..., Zn when we have the extra information that the expectation E(Z) = 0. In this

case, we know that a semi-parametrically efficient estimator of σ2 is given by an efficient

GMM estimator associated to the two moment conditions {E(Z) = 0, E(Z2 − σ2) = 0}

that is (see e.g. Back and Brown (1993)):

σ̂2 =
1

n

n∑
i=1

Z2
i − b̂

1

n

n∑
i=1

Zi

where b̂ is the sample counterpart of the population regression coefficient:

b =
Cov(Z2, Z)

Var(Z)
=
E(Z3)

E(Z2)
.

In other words, we improve the naive estimator of Var(Z) = E(Z2) by computing a

sample mean of the residual of the regression of Z2 on Z. By doing so, we optimally

minimize the variance among all possible unbiased estimators of σ2 provided by sam-
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ple counterparts of expectations E (Z2 − βZ) = Var(Z) for any real number β. The

resulting asymptotic variance of the normalized estimation error n1/2
(
σ̂2 − σ2

)
is:

Var(Z2)− b2Var(Z) = (κ− 1− ξ2)[Var(Z)]2,

where κ = E(Z4)/[Var(Z)]2 and ξ = E(Z3)/[Var(Z)]3/2 respectively stand for the

kurtosis and the skewness coefficient of the variable Z.

This strategy, well-known in Monte-Carlo estimation and dubbed the “control vari-

able principle”, is using efficiently the extra-information that E(Z) = 0. Of course,

this principle is relevant only when the regression coefficient is not zero, that is, in the

above example, when the variable Z features a non-zero skewness.

It is then clear that the estimator improvement allowed by Theorem 1 corresponds

exactly to the same principle. The efficient asymptotic variance is defined from the

integral between 0 and 1 of the function 2
3

(
us − 2

3
v2
s

)
σ4
s that is the local analog of

(κ − 1 − ξ2)[Var(Z)]2 (recall that in the normal case us = κ = 3 and vs = ξ = 0).

The deep reason for this analogy is the possibility, by following Mykland and Zhang

(2006), to define in continuous time a regression of the naive normalized estimation

error n1/2 ([X,X]t − 〈X,X〉t) on the process Xt, that is the continuous time analog of

the regression above of Z2 on Z. For doing so, we first note that by the Girsanov’s

theorem, we can make a measure change such that the process Xt is a local martingale

under the new measure, dubbed equivalent martingale measure. This measure change,

allowing to represent Xt as a process with zero-drift, is the continuous-time analog of

the information that E(Z) = 0. The nice thing with continuous time is that we now

have this information for free. Moreover, following Proposition 1 (p. 1408) of Mykland

and Zhang (2009), we know that stable convergence in law is not impacted by this
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change of measure.

Then, under the equivalent martingale measure, the normalized estimation error is

asymptotically equivalent to the local martingale

Mt = n1/2

∑
tn,i≤t

(
Xtn,i

−Xtn,i−1

)2
+ (Xt −Xt∗)2 −

∫ t

0

σ2
sds


and t∗ = max {tn,i : tn,i ≤ t} . By Itô’s lemma, this local martingale can be rewritten:

Mt = n1/2

2
∑
tn,i≤t

∫ tn,i+1

tn,i

(
Xs −Xtn,i

)
dXs + 2

∫ t

t∗
(Xs −Xt∗)dXs

 .

The continuous time analog of the regression of the estimation error on the path of Xt

amounts to characterize a stochastic process gt solution of:

P lim
n→∞

〈
M. −

∫ .

0

gsdXs, X

〉
t

= 0.

The solution of this equation is actually characterized by:

∫ t

0

gsσ
2
s ds = P lim

n→∞
〈M,X〉t =

2

3

∫ t

0

ṽsσ
3
s ds,

where the last equality, still a consequence of Itô’s lemma, is explicitly derived in the

Appendix. Hence:

gs =
2

3
ṽsσs.

and the so-called bias term in Theorem 1 which should be (after rescaling by 1/
√
n)

subtracted from integrated variance to get an improved estimator is nothing but the



Realized Volatility When Sampling Times are Possibly Endogenous 17

regression: ∫ t

0

gsdXs =
2

3

∫ t

0

ṽsσsdXs.

Hence, it is fair to say that our improved estimation strategy is the continuous time

analog of the control variables principle. This principle allows us an efficiency gain

with respect to the naive estimator when the endogeneity of time produces a non-zero

“continuous time skewness”, as manifested by a non-zero tricity.

We provide in the next section a list of possible models of random times, showing

that some of them feature the kind of endogeneity that provides a non-zero tricity

(vt 6= 0) and some others do not.

3 Various Examples and Illustration

Example 1. (Times that are independent of the process). In the model of Mykland

and Zhang (2006), the times tn,i are independent of the process Xt, or equivalently,

nonrandom but irregularly spaced. By comparing their Proposition 1 (p. 1940) with

our Theorem 1 above, it follows that vt ≡ 0, and ut = 3H ′t. Equidistant sampling is a

special case (Ht = t). 2

Example 2. (Times generated by a fixed distortion from equidistant sampling). In

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), times are allowed to be un-

equally spaced if they follow tn,i = F (i/n), where F is allowed to be a smooth random

process which does not depend on n (Section 5.3, p.1505-1507). This accommodates

some endogeneity of time, but not enough to avoid vt ≡ 0. 2

Example 3. (Times generated by flat price trading). In the model recently proposed

by Phillips and Yu (2007), the microstructure noise completely offsets the effect of price
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movement over the subinterval in which flat price occurs. In other words, the efficient

price may be exactly observed from time to time but only at random dates defined as:

tn,i − tn,i−1 =
Di

n

where (Di) is a strictly stationary and ergodic sequence of nonnegative random vari-

ables with finite variance. These variables are allowed to depend only on past observed

prices. In other words, assumption (C) of Hayashi, Jacod, and Yoshida (2011) is ful-

filled and thus endogeneity of time is still not enough to avoid vt = 0. By a slight

extension of Mykland and Zhang (2006), Phillips and Yu (2007) actually show directly

that we are back to the result of Example 1. 2

Example 4. (Times generated by hitting a barrier). For simplicity, take µt ≡ 0 and

σt ≡ 1. The times tn,i are defined recursively: tn,0 = 0, and tn,i+1 is the first time

t ≥ tn,i so that Xt −Xtn,i
= either n−1/2a or −n−1/2b, where a, b > 0. Let N be such

that tn,N ≤ 1 < tn,N+1.

In other words,

Xtn,i+1
−Xtn,i

= n−1/2Zi+1 for tn,i+1 < 1, (13)

where Z1, Z2, ... are i.i.d. with mean zero and point mass as a and −b (so P (Z = a) =

b/(a+ b)).

By standard renewal arguments N/n
p→ 1/(ab), and so the conditions of Theorem 1

are satisfied, with vt ≡ E(Z3)/(ab)3/2 = (a − b)/
√
ab and ut ≡ E(Z4)/(ab)2 = (a2 −

ab+ b2)/ab. We note that vt is nonzero except when a = b. Moreover, it can be shown

that the quadratic variation of time Ht = t(a2 + 3ab+ b2)/(3ab), hence it is never the
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case that ut = 3H ′t. 2

Example 5. (General return distributions). From Appendix 1 of Hall and Heyde

(1980), the distribution of a general random variable (with mean zero) can be generated

by the same device as in the previous example, by letting the barrier itself be random.

(In mathematical terms, this is called embedding in Brownian motion.) In this more

general setting, equation (13) remains valid, and the Zi are i.i.d. with any mean zero

distribution. If we take E(Z4) <∞, the conditions for Theorem 1 remain satisfied, and

it is still the case that vt ≡ E(Z3)/(E(Z2))3/2 and ut ≡ E(Z4)/(E(Z2))2. 2

Example 6. (Connection to the structural autoregressive conditional duration model).

The paper by Renault, Van der Heijden, and Werker (2012) generalizes the hitting time

technique of Example 4 above to construct autoregressive conditional duration models.

It rests upon a dynamic version of Abbring (2012)’s mixed hitting time model. The

observation times are defined recursively as:

ti+1 = inf{t > ti : |Zt − Zti | > ϕtiMi} (14)

where Z is a Brownian motion with drift µZ and, for identification purpose, unit

variance. The important difference with Example 4 is that hitting barriers are now

defined through a latent Brownian motion Z with drift µZ , which may be only partially

(or not) correlated with the Brownian motion W defining price dynamics. The double-

boundary setting is more convenient than a single-boundary one as it ensures that

durations have finite expectations. Note that the kind of asymmetry which matters for

us, namely the asymmetric barriers that yields vt 6= 0, is accommodated by the non-

zero correlation between the two Brownian motions Z and W , which precisely means

that random times are endogenous.
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More precisely, a conditional mixture feature of observed prices is produced by the

mixing variables Mi, i = 1, 2, ..N, which are i.i.d. positive random variables that are

independent of Z. By contrast, the positive variable ϕti is Fti-measurable and cap-

tures observed heterogeneity in the thresholds and associated hitting times. Given both

Fti and the unobserved heterogeneity Mi, the log-price process (Xti+h)0≤h≤∆ti+1
(with

∆ti+1 = ti+1 − ti) is specified as a Brownian motion with drift µti(Mi) and variance

σ2
ti

(Mi). Moreover, the couple (Xti+h, Zti+h)0≤h≤∆ti+1
follows a bivariate Brownian mo-

tion with instantaneous correlation (still conditional on Fti and Mi) denoted by ρti(Mi).

It can then be shown that conditionally on Fti and Mi, the log-price change ∆Xti+1

has the same distribution as the following random variable

[µti(Mi)− ρti(Mi)σti(Mi)µZ ]∆ti+1

+ ρti(Mi)σti(Mi)∆Zti+1
+
√

1− ρti(Mi)2σ∆ti+1
(Mi)

√
∆ti+1ζ, where ζ i ∼ N(0, 1).

In the simplest case when ϕti ≡ 1, Mi ≡Mn, µti(Mi) ≡ µX , σti(Mi) ≡ σ, ρti(Mi) ≡ ρ

and µX = ρσµZ , ∆Xti+1
are i.i.d. random variables which have the same distribution

as the following random variable

X̃n := ρσZT +
√

1− ρ2σ
√
Tζ, where ζ ∼ N(0, 1),

where T = inf{t > 0 : |Zt| > Mn}. It is easy to see that

E(X̃3
n) = σ3

(
ρ3E(Z3

T ) + 3ρ(1− ρ2)E(ZTT )
)
.

When µZ 6= 0, one can show that E(Z3
T ) 6= 0 and E(ZTT ) 6= 0, hence as long as

ρ is not the root of a cubic polynomial, the third moment E(X̃3
n) 6= 0. However, in
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order to obtain high frequency observations one needs to let Mn → 0, say, for example,

Mn = M/
√
n, then one can show that

√
n

3
E(X̃3

n)→ 0 and hence a nonzero vt does not

show up. 6 In the general case when ϕti ,Mi etc. are nonconstant, a similar but more

complicated computation still applies and vt still vanishes. If however one chooses to

use an asymmetric threshold in (15) like in Example 4 above, say, for example,

ti+1 = inf{t > ti : Zt − Zti > ϕtiM
1
i or Zt − Zti < −ϕtiM

2
i }, (15)

where for both j = 1 and 2, {M j
i , i = 1, 2, ..} is a sequence consisting of i.i.d. positive

random variables, and the two sequences are independent and have different means,

say with means a/
√
n and b/

√
n for some a 6= b respectively, then a nonzero vt will

show up, just like in Example 4 above. 2

Example 7. (Connection to uncertainty zones). Robert and Rosenbaum (2010, 2012)

propose a model where endogenous transaction dates are produced by the fact that

the transaction prices are bound to lie on a tick grid defined by multiples kα, k ∈ N,

of a tick size α. For a current mid-tick grid value mk = (k + 1/2)α, they consider an

uncertainty zone Uk = [mk − ηα,mk + ηα] for some given number η, 0 < η < 1. The

zones Uk are called uncertainty zones since they represent bands inside of which the

efficient price cannot trigger a change of the transaction price. The observation times

are corresponding exit times tα,i where for the purpose of asymptotic theory the tick

size α is considered as converging to zero (analogous to tn,i in Example 4 with n→∞).

Interestingly enough, the control variable principle of variance reduction by regression

of the error on the price process works differently depending upon whether one considers

the quadratic variation estimation error or the hedging error due to uncertainty zone.

6We thank one of the referees for pointing this out.
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In Robert and Rosenbaum (2012) there is no asymptotic bias (see their Lemma 4.14).

This is not because of zero skewness, but rather, due to a cancelation of nonzero

skewness terms, see Fukasawa and Rosenbaum (2012) for a detailed analysis. When

it comes to hedging errors, there is some relevant asymmetry if and only if η 6= 1/2.

This is due to the fact that, except if η = 1/2, when starting from one side of an

uncertainty zone, the barriers to reach are asymmetric. Robert and Rosenbaum (2010)

do show directly (see their Lemma 5.8 and their Theorem 4.2.) that the (asymptotic)

continuous time regression of the hedging error on the price process is non-zero if and

only if η 6= 1/2. In other words, the control variable principle put forward in Theorem 1

above can be fruitfully applied for variance reduction in many different contexts.

2

4 Testing for the Presence of Endogenous Times

In this section we present a test for endogeneity of times, by establishing a CLT for

the tricity [X,X,X]1 under the null hypothesis that the observation times tn,i are

independent of Xt.
7 We then apply the CLT to real data and compute the p-values.

We shall see in Section 6 that when applied to the financial data that we consider, the

test rejects the null hypothesis of non-endogeneity.

7Obviously, by a time change argument, the null hypothesis also covers times that are of the form
F (tn,i), where F is random, adapted, but independent of n. This is a form of endogeneity that does
not lead to modification of the properties of the realized volatility.
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4.1 CLT for tricity

Theorem 2. Assume the null hypothesis that the observation times tn,i are independent

of Xt, that (1) holds, and that Ht admits a continuous derivative ht. Suppose further

that the following so-defined “tricity of time”

Qt := lim
n
N2

∑
tn,i≤t

∆t3n,i, t ∈ [0, 1] (16)

exists.8 Then, stably in law,

N [X,X,X]1 → b+ aZ, (17)

where

b = 3

∫ 1

0

σ2
tht dXt +

3

2

∫ 1

0

ht d〈σ2, X〉t, a2 = 15

∫ 1

0

σ6
t dQt − 9

∫ 1

0

σ6
th

2
t dt,

and Z is a standard normal random variable that is independent of F1.

When the times are equidistant, the theorem is a special case of Theorem 2 in

Kinnebrock and Podolskij (2008). See also the development in Example 3 of Mykland

and Zhang (2009).

We next study how to estimate the parameters b and a.

For notational ease, we write tn,i as ti in the rest of this section.

Lemma 1. Assume that 1/mini ∆ti = op(n
1+ε) and maxi ∆ti = op(n

−(1−ε)) for some

0 < ε < 1/2. Then for any 1 > β ≥ (1 + ε)− 1/2, if we let Mn = [nβ], and define σ̂2
t

8Measurability of N is assured since the times are taken to be independent of the process Xt
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as

σ̂2
t =

[X,X]tiMn
− [X,X]t(i−1)Mn

tiMn − t(i−1)Mn

, if t ∈ [tiMn , t(i+1)Mn), i = 1, 2, . . . , [N/Mn], (18)

and σ̂2
t = 0 for t ∈ [0, tMn). Then under the assumption that σt is continuous, σ̂2

t

converges in probability in D(0, 1] to σ2
t .

Observe that we intentionally shift the time when we define σ̂2
t , so that it is adapted

to the filtration Ft.

Clearly if we define σ̂t :=

√
σ̂2
t , then for any α > 0, σ̂αt converges in probability

in D(0, 1] to σαt . See Renò (2008), Kristensen (2010) for alternative estimators of spot

volatility.

In the following we fix Mn = [nβ] for some 1 > β ≥ (1 + ε)/(1− ε)− 1/2.

We next estimate the derivatives of Ht and Qt. For given n and t ∈ (0, 1), we set


Ĥt = N

∑
j≤iMn

∆t2j ,

Q̂t = N2
∑
j≤iMn

∆t3j ,

for t = tiMn and piecewise linear in between the tiMn .

The derivatives, ĥt and q̂t, are then naturally defined as


ĥt =

ĤtiMn
− Ĥt(i−1)Mn

tiMn − t(i−1)Mn

,

q̂t =
Q̂tiMn

− Q̂t(i−1)Mn

tiMn − t(i−1)Mn

,

if t ∈ [tiMn , t(i+1)Mn), i = 1, 2, . . . , (19)

and ĥt = q̂t = 0 for t ∈ [0, tMn). Again, here we shift the time to make them to be
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adapted to Ft.

Proposition 1. Under the assumptions of Theorem 2 and Lemma 1, the terms in the

expressions of b and a2 can be estimated as follows: let Mn = [nβ] for some 1 > β ≥

(1 + ε)/(1− ε)− 1/2. Then

(i) the stochastic integral (σ̂2ĥ) ·X converges in probability to
∫ 1

0
σ2
tht dXt;

(ii) define

̂〈σ2, X〉t = 2
∑
j≤i

(σ̂2
tjMn
− ̂σ2

t(j−1)Mn
) · (XtjMn

−Xt(j−1)Mn
), t ∈ [tiMn , t(i+1)Mn)),

and ̂〈σ2, X〉t = 0 for t ∈ [0, tMn). Then ̂〈σ2, X〉t converges in probability in D[0, 1]

to 〈σ2, X〉t;

(iii)
∑

i ĥt(i−1)Mn
·
(
̂〈σ2, X〉tiMn

− ̂〈σ2, X〉t(i−1)Mn

)
→
∫ 1

0
ht d〈σ2, X〉t,∑

i σ̂
6
t(i−1)Mn

· q̂t(i−1)Mn
· (tiMn − t(i−1)Mn)→

∫ 1

0
σ6
t dQt, and∑

i σ̂
6
t(i−1)Mn

· ĥ2
t(i−1)Mn

· (tiMn − t(i−1)Mn)→
∫ 1

0
σ6
th

2
t dt, all in probability.

We can then define estimators of b and a as follows


b̂ = 3(σ̂2ĥ) ·X +

3

2

∑
i

ĥt(i−1)Mn
·
(
̂〈σ2, X〉tiMn

− ̂〈σ2, X〉t(i−1)Mn

)
,

â2 = 15
∑
i

σ̂6
t(i−1)Mn

· q̂t(i−1)Mn
· (tiMn − t(i−1)Mn)− 9

∑
i

σ̂6
t(i−1)Mn

· ĥ2
t(i−1)Mn

· (tiMn − t(i−1)Mn).

By the previous proposition, b̂ and â2 converge in probability to b and a2 respectively.

Define â =
√
â2. Combining this convergence with Theorem 2 we obtain

Corollary 1. Under the assumptions of Proposition 1, for the afore-defined b̂ and â

we have that

T :=
N [X,X,X]1 − b̂

â
→ Z,



Realized Volatility When Sampling Times are Possibly Endogenous 26

where Z is a standard normal random variable that is independent of F1.

This result enables us to compute a p-value for the null hypotheses that the obser-

vation times are independent of the process Xt. More specifically, for each day, based

on the observed price process Xti and the observation times ti, we can compute the

test statistic T . The asymptotic p-value is then given by P (|Z| > |T |). Under the

alternative (11) considered in this paper,
√
N [X,X,X]1 has a non-zero limit, and thus

we expect the statistic T to blow up asymptotically in this case. Hence the test should

consistently detect the alternatives of non-zero limit of the tricity.

4.2 Combining Several Days

When the p-values are independent over days (or have approximate martingale struc-

ture), we can combine all the p-values and obtain a combined p-value using Fisher’s

combined test. More explicitly, if we let pi (i = 1, . . . , L) be the p-values from day 1

to day L, then under the null, asymptotically,

−2
L∑
i=1

log(pi) ∼ χ2
2L.

We can then compare −2
∑L

i=1 log(pi) with the χ2
2L distribution and get a combined

asymptotic p-value

Pcombined = P

(
χ2

2L > −2
L∑
i=1

log(pi)

)
.
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5 Simulation Study

5.1 Confidence Intervals in the Endogenous Case

We take the same setting as Example 4 in Section 3 with µ = 0, σ = 0.02, a = 0.04,

b = 0.01 and n = 3600. According to this stopping rule, a transaction happens each

time when there is an increase of 0.0667% or a decrease of 0.0167% in the price.

We examine three confidence intervals based on the following three different meth-

ods.

• Confidence intervals CIH (green dashed lines). These are built out of the naive

method ignoring the dependency between the observation times and the process,

using the CLT based on the quadratic variation of times:

√
N

(
[X,X]1 −

∫ 1

0

σ2
tdt

)
→L−Stably

∫ 1

0

√
2σ4

tH
′(t) dBt, (20)

where Bt ⊥⊥ Wt, and Ht is defined by (1).

• Confidence intervals CIX (blue dotted lines). These are built by still ignoring the

dependency between the observation time and the process, but using the CLT

based on the quarticity which is equivalent to the above CLT if there were no

endogeneity:

√
N

(
[X,X]1 −

∫ 1

0

σ2
tdt

)
→L−Stably

∫ 1

0

√
2

3
us σ

2
s dBt, (21)

where Bt ⊥⊥ Wt.

• Confidence intervals CIC (red solid lines). These are based on Theorem 1, by
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first estimating the asymptotic bias, and then correcting for it from the Realized

Volatility. The variance is corrected accordingly.

In estimating the processes σs, Hs, us and vs in Theorem 1, we use the blocking

method as in Section 4.1. More specifically, we choose β = 3/4 and M = [nβ]. More-

over, for block number i covering the time period (t(i−1)M , tiM ] with length ∆τ i =

tiM − t(i−1)M , we estimate σ2
t by (18), estimate ht and qt by (19), and estimate vt and

ut in a similar fashion. And so, for example, the asymptotic bias term 2
3

∫ 1

0
vsσs dXs

when we build the CIC based on Theorem 1 will be estimated by 2
3
(v̂ · σ̂) ·X. Under the

assumptions of Proposition 1, by Theorem VI.6.22 (c) of Jacod and Shiryaev (2003),

this converges in probability to 2
3

∫ 1

0
vsσs dXs.

Data of 252 days are simulated based on the parameters as listed above. Confidence

intervals of the first 22 days are plotted in the upper panel of the Figure 1. Confidence

intervals of 252 days are plotted in the bottom panel of Figure 1. The summary

statistics comparing the performance of the confidence intervals based on the 252 days

are listed in Table 1.

[ Figure 1 about here ]

[ Table 1 about here ]

From Figure 1 and Table 1 we have the following observations.

1. Width of the confidence intervals: We see that CIX is much narrower than

CIH . This reflects the fact that in the endogenous case the asymptotic variance

limn
2
3
N [X,X,X,X]1 may be substantially different from

∫ 1

0
2σ4

s dHs, which is
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the asymptotic variance one would get if the endogeneity is overlooked. Further-

more, the correct confidence interval CIC is even narrower than CIX .

2. Bias correction: When the blue confidence intervals tend to be too extreme and

not covering the true value, our bias correction may correct it back especially

when the extremeness of the blue confidence interval was due to the dependency

of the time and process rather than pure randomness.

3. Coverage frequency: We see from the summary statistics that the confidence

intervals CIC have coverage frequency of 95.5%, and in the meanwhile being

narrower than the confidence intervals based on the other two methods. This

coverage frequency is close to what is being expected (95%), and is similar to

that achieved by the CIX , which are wider. Despite the bias, the CIH have

bigger coverage frequency which is mainly due to the (wrongly estimated) bigger

width.

5.2 Confidence Intervals in the Non-endogenous Case

To further test the performance of the CIC , we also simulated non-endogenous data.

The Xt process is again taken to be σWt for σ = 0.02 and Wt a Brownian motion.

The observation times tn,i’s are taken to be equidistant, namely, tn,i = i/n for i =

0, 1, . . . , n and n = 3000. The comparisons of the three different confidence intervals

are summarized in Figure 2 and Table 2.

[ Figure 2 about here ]

[ Table 2 about here ]
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We see from Figure 2 and Table 2 that for non-endogenous data, our CIC performs

just as well as the conventional confidence intervals.

6 Empirical Study

6.1 Data Description

We use trade data from the TAQ database. We consider several traded stocks at

NYSE. Our analysis is based on subsampled log prices, with the sampling period K

specified for different stocks and is reported below. The K is chosen to be reasonably

large so that the microstructure noise would be negligible. The value n, which now

characterizes the frequency of subsampled data, is estimated based on historical data

and is reported below too. The block size Mn that is used in estimating σ̂2
t , ĥt, q̂t etc.

is taken to be [n3/4].

We now conduct the test established in Section 4.1.

6.2 Test Results

We here study the behavior of our test statistic for two stocks: SKS and IBM (the test

results for two other stocks (DDS and MAT) are similar and are put in a supplementary

document which is available on our webpages). We show the distribution of daily p

-values for SKS over one year or IMB over 3 months, along with a combined p-value

(see Section 4.2 for the definition). It is clear from the results that the null hypothesis

of non-endogeneity is rejected for these stocks when aggregated over the total time

period. The result may vary over individual days, either due to statistical variability or
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to the varying dynamics. Though not strictly needed, we also provide autocorrelation

function (ACF) plot of the p-values to show that they are uncorrelated across days.

6.2.1 SKS

In this part we apply the test to SKS 2005 one year data. The sampling frequency is

K = 8, and n is taken to be 250.

Uncorrelated condition between the daily p-values is examined, and the ACF plot

together with the histogram of the daily p-values are shown in Figure 3. The combined

p-value is 0 to eight (numerically) significant digits.9

[ Figure 3 about here ]

6.2.2 IBM

Nextg we examine the IBM 2005 Jan-Mar three months’ data. K and n are taken to

be 25 and 250 respectively. The histogram of the daily p-values and the ACF plot are

shown in Figure 4. The combined p-value is 0 to eight significant digits.

[ Figure 4 about here ]

7 Conclusion

We have established a central limit theorem for the realized volatility for general de-

pendent times. We illustrate by simulation study how our theory can be used to obtain

9I.e., the p-value is smaller than 10−8. The bound is due to the assessed numerical accuracy of our
calculation.
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correct interval estimates of the integrated volatility in the general endogenous time

setting. We also show that the endogeneity can exist in financial data, using a test

based on a central limit theorem for tricity.
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Rényi, A. (1963), “On Stable Sequences of Events,” Sankyā Series A, 25, 293–302.
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A Appendix

A.1 Proof of Theorem 1

Proof. By assumption (7), P (maxt |tn,i+1 − tn,i| ≥ n−(2/3+ε))→ 0. We first argue that
from this, without loss of generality, we can assume that

max
i
|tn,i+1 − tn,i| ≤ n−(2/3+ε) almost surely. (A.1)

To see this, construct new observation times given by t̃n,0 = 0 and then recursively
t̃n,i+1 = min(tn,i+1, t̃n,i + n−(2/3+ε)). We obtain that P (t̃n,i = tn,i for all i) → 1 as
n → ∞. Thus the conditions of Theorem 1 remain satisfied (with the same limiting
quantities), while (A.1) is also satisfied.

Next, because we shall prove stable convergence, and because of the local bound-
edness and that inft∈(0,1] σt > 0, we can without loss of generality assume that |µt| is
bounded by a nonrandom constant, and 0 < c < σt ≤ σ+ for all t ∈ (0, 1] for some
nonrandom constants c and σ+(see Section 2.4.5 of Mykland and Zhang (2012)). One
can further suppress µ as in Section 2.2 (p.1407-1409) of Mykland and Zhang (2009),
and act as if X is a martingale.

Define the interpolated and rescaled error process by

dMt = 2n1/2(Xt −Xt∗) dXt , M0 = 0.

where t∗ is the largest time tn,i smaller than or equal to t. From (10), it follows as in the

proof of Proposition 2 (p. 1952) of Mykland and Zhang (2006) that 〈M,M〉t
p→ 2

3

∫ t
0
ũsσ

4
s ds

for all t (the proof does not depend on times being nonrandom). The remainder term in
equation (6.3) of that paper vanishes at the relevant order because of our condition (7).
More specifically, this works as follows. With the same interpolation of [X,X,X,X]t,
and using the first part of equation (6.3) in Mykland and Zhang (2006), we obtain

n d[X,X,X,X]t =
3

2
d〈M,M〉t + 4n(Xt −Xt∗)3 dXt. (A.2)

We shall show that n
∫ ·

0
(Xt−Xt∗)3 dXt → 0 in D[0, 1]. Now by the Burkholder-Davis-

Gundy inequality (see Section 3 of Ch. VII of Dellacherie and Meyer (1982), or p.193
and 222 in Protter (2004)), the expected quadratic variation of n

∫ ·
0
(Xt − Xt∗)3 dXt
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satisfies

E

〈∫ ·
0

n(Xt −Xt∗)3 dXt,

∫ ·
0

n(Xt −Xt∗)3 dXt

〉
1

= n2E

∫ 1

0

(Xt −Xt∗)6 d 〈X,X〉t

≤ cn2σ8
+ · E

∫ 1

0

(t− t∗)3 dt

≤ cn2σ8
+ · n−(2/3+ε)·3

= O(n−3ε)→ 0 ,

where c is a universal constant, and where the second-to-last transition is by (A.1).

This term is hence negligible. By Assumption (10) and (A.2), 〈M,M〉t
p→ 2

3

∫ t
0
ũsσ

4
sds

for all t.

Similarly, (11) yields that 〈X,M〉t
p→ 2

3

∫ t
0
ṽsσ

3
s ds, again for all t. In fact, by Itô’s

formula and that d〈X,M〉t = 2n1/2(Xt −Xt∗) d〈X,X〉t we get an analogous equation
to (A.2) for 〈X,M〉t as follows:

2

3
n1/2 d(Xt −Xt∗)3 = 2n1/2(Xt −Xt∗)2 dXt + d〈X,M〉t. (A.3)

Using similar arguments as in the previous paragraph, one can show that the martingale
term is negligible. In fact, using (A.1) and the Burkholder-Davis-Gundy inequality
again,

E

〈
2n1/2

∫ ·
0

(Xt −Xt∗)2 dXt, 2n
1/2

∫ ·
0

(Xt −Xt∗)2 dXt

〉
1

=4nE

∫ 1

0

(Xt −Xt∗)2 d〈X,X〉t

≤4nσ4
+E

∫ 1

0

(t− t∗)2 dt

=O(n−1/3−2ε)→ 0.

The convergence of 〈X,M〉t then follows from Assumption (11) and (A.3).

The overall result now follows from the limit results in either Theorem B.4 (p. 65-
67) of Zhang (2001), or Theorem 2.28 of Mykland and Zhang (2012). A similar but
less complicated argument was used (in the non-edogenous times case) in Proposition 1
and Theorem 1 (p. 1940-41) of Mykland and Zhang (2006).

A.2 Proof of Remark 3

Proof. In analogy with Chapter 2.4.5 of Mykland and Zhang (2012), we can without
loss of generality assume that σ2

t and 〈σ2, σ2〉′t are bounded by a constant, say, c1.
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Moreover, as argued in the proof of Theorem 1 we can assume (A.1), i.e., maxi ∆tn,i ≤
n−( 2

3
+ε).

Also, it is enough to show the result under the equivalent martingale measure
discussed in Section 2.2 of Mykland and Zhang (2009). We here also assume that σ2

t

is a martingale, which can in most cases be assumed through an additional Girsanov
change-of-measure. (If this is not available, a direct but tedious calculation provides
the same result). By the third Bartlett identity for martingales (eq. (2.14), p. 23, of
Mykland (1994)), we have that

E((∆Xtn,i
)3 | Ftn,i−1

) = 3E(∆Xtn,i

∫ tn,i

tn,i−1

σ2
sds | Ftn,i−1

). (A.4)

By Itô’s formula, we obtain d((t−tn,i−1)(σ2
t−σ2

tn,i−1
)) = (σ2

t−σ2
tn,i−1

)dt+(t−tn,i−1)dσ2
t ,

whence, from (A.4),

E((∆Xtn,i
)3 | Ftn,i−1

) = 3σ2
tn,i−1

E(∆Xtn,i
∆tn,i | Ftn,i−1

) + remainder, (A.5)

where

remainder = 3E(∆Xtn,i
∆tn,i∆σ

2
tn,i
| Ftn,i−1

)− 3E(∆Xtn,i

∫ tn,i

tn,i−1

(t− tn,i−1)dσ2
s | Ftn,i−1

)

= 3E(∆Xtn,i
∆tn,i∆σ

2
tn,i
| Ftn,i−1

)− 3E

(∫ tn,i

tn,i−1

(t− tn,i−1)d〈X, σ2〉tn,i
| Ftn,i−1

)
.

(A.6)

If we can show that the remainder (A.6) is of order op(n
−1/2), the result in Remark 3

follows since the difference between the optional (observed) and predictable variation
is a martingale of higher order (compare, for example, to the proof in Chapter 2.3.6
of Mykland and Zhang (2012)). To see the negligibility of the remainder, focus on the
first (more complicated) term; the second term is dealt with similarly but more easily.

By Hölder’s inequality, and then the Burkholder-Davis-Gundy (BDG) inequality
(see Section 3 of Ch. VII of Dellacherie and Meyer (1982), or p.193 and 222 in Protter
(2004)), we obtain (C4 is a universal constant in the BDG inequality):

E(∆Xtn,i
∆tn,i∆σ

2
tn,i
| Ftn,i−1

) (A.7)

≤E((∆Xtn,i
)4 | Ftn,i−1

)
1
4E((∆tn,i)

2 | Ftn,i−1
)
1
2E((∆σ2

tn,i
)4 | Ftn,i−1

)
1
4

≤C2
4E((∆〈X,X〉tn,i

)2 | Ftn,i−1
)
1
4E((∆tn,i)

2 | Ftn,i−1
)
1
2E((∆〈σ2, σ2〉tn,i

)2 | Ftn,i−1
)
1
4

≤C2
4c1E((∆tn,i)

2 | Ftn,i−1
). (A.8)
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Hence, ∑
i

E(∆Xtn,i
∆tn,i∆σ

2
tn,i
| Ftn,i−1

) ≤ C2
4c1

∑
i

E((∆tn,i)
2 | Ftn,i−1

)

≤ C2
4c1n

− 2
3
−ε
∑
i

E(∆tn,i | Ftn,i−1
)

= Op(n
− 2

3
−ε), (A.9)

whence this term is negligible at the op(n
− 1

2 ) rate. The result in the remark follows.

A.3 Proof of Theorem 2

Proof. This is by direct modification of the proof in Example 3 of Mykland and Zhang
(2009). In fact, equation (28) therein still holds. By (1) and (16) and similar calcula-
tions as on page 1415 of Mykland and Zhang (2009) we then obtain that, using the nota-

tion therein, under P ∗n , N [X,X,X]1 converges to b′+aN(0, 1) where b′ = 3
∫ 1

0
σ3
tht dW

∗
t

and a as given in the theorem.

Next we translate the convergence from measure P ∗n back to P . By the same
arguments as on p.1416 of Mykland and Zhang (2009) we have that

A12 =
1

2

∫ 1

0

ktσ
3
t dHt =

3

2

∫ 1

0

〈σ2, X〉′t dHt =
3

2

∫ 1

0

ht d〈σ2, X〉t.

The rest then follows from the same arguments as in Mykland and Zhang (2009).

A.4 Proof of Lemma 1

Proof. No matter whether the observation times are endogenous or not, the con-
vergence rate for [X,X]t is always

√
n, hence for our chosen Mn, if we let δn =

mini(tiMn − t(i−1)Mn), then 1/δn = op(n
(1+ε)/nβ) = op(

√
n), and

1/δn · ([X,X]t − 〈X,X〉t) → 0 ∈ D([0, 1]).

It then follows easily that σ̂2
t converges uniformly to σ2

t on any compact interval inside
(0, 1], see, e.g., the proof of Lemma 1 in Li, Zhang, and Zheng (2013).

A.5 Proof of Proposition 1

Proof. The conclusion in (i) follows from Lemma 1 and Theorem VI.6.22 (c) of Jacod
and Shiryaev (2003); (ii) follows as in Section 4.3 in Mykland and Zhang (2009) along
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with the development in Wang and Myland (2011); (iii) is straightforward.
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A.6 Figures and Tables
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Figure 1. Confidence intervals computed based on the three methods described in Section 5.1
for endogenous data (Green dashed: CIH ; Blue dotted: CIX ; Red solid: CIC). Left panel:
for 22 days; right panel: for 252 days.
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Figure 2. Confidence intervals computed based on the three methods described in Section 5.1
for non-endogenous data (Green dashed: CIH ; Blue dotted: CIX ; Red solid: CIC). Left
panel: for 22 days; right panel: for 252 days. Three different CIs roughly overlap each other.
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Figure 3. Histogram and ACF plot of the daily p-values for SKS 2005 one year data.
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IBM: p−values
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Figure 4. Histogram and ACF plot of the daily p-values for IBM 2005 Jan-Mar three months
data.

Average
width

RMSE
Coverage
Frequency

% Reduced
width compared
with CIH

% Reduced
RMSE compared
with CIH

CIH 6.034e-05 1.001e-05 99.6% – –

CIX 3.937e-05 1.001e-05 96.0% 34.7% 0

CIC 3.165e-05 7.702e-06 95.5% 47.5% 23.1%

Table 1. Summary statistics based on simulated endogenous data of 252 days. The RMSE
in the table above stands for the root mean of the squared distance between the centers of
the confidence intervals and the true σ2. CIH and CIX are based on existing CLTs when
endogeneity is ignored, see (20) and (21); CIC is based on Theorem 1, which is the correct
confidence interval to use for endogenous data.

Average
width

RMSE
Coverage
Frequency

CIH 4.045e-05 1.003e-05 93.7%
CIX 4.041e-05 1.003e-05 93.6%
CIC 4.025e-05 1.061e-05 93.4%

Table 2. Summary statistics based on simulated non-endogenous data of 252 days. The
confidence intervals built based on the three methods are roughly the same.
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