
Option Pricing Bounds and Statistical Uncertainty:

Using Econometrics to Find an Exit Strategy in Derivatives Trading 1

by

Per A. Mykland

TECHNICAL REPORT NO. 511

Department of Statistics
The University of Chicago

Chicago, Illinois 60637

earlier versions: September 2001 and September 2003

This version: February, 2009

1 This research was supported in part by National Science Foundation grants DMS 99-71738, 02-04639,

06-04758, and SES 06-31605.



Option Pricing Bounds and Statistical Uncertainty:

Using Econometrics to Find an Exit Strategy in Derivatives Trading 1

by

Per A. Mykland
The University of Chicago

Contents

1. Introduction

1.1. Pricing bounds, trading strategies, and exit strategies

1.2. Related problems and related literature

2. Options hedging from prediction sets: Basic description

2.1. Setup, and super-self financing strategies

2.2. The bounds A and B

2.3. The practical rôle of prediction set trading: reserves, and exit

strategies

3. Options hedging from prediction sets: The original cases

3.1. Pointwise bounds

3.2. Integral bounds

3.3. Comparison of approaches

3.4. Trading with integral bounds, and the estimation of consumed

volatility

3.5. An implementation with data

4. Properties of trading strategies

4.1. Super-self financing and supermartingale

4.2. Defining self-financing strategies

4.3. Proofs for Section 4.1

1 This research was supported in part by National Science Foundation grants DMS 99-71738, 02-04639,

06-04758, and SES 06-31605.



5. Prediction sets: General Theory

5.1. The Prediction Set Theorem

5.2. Prediction sets: A problem of definition

5.3. Prediction regions from historical data: A decoupled procedure

5.4. Proofs for Section 5

6. Prediction sets: The effect of interest rates, and general formulae for

European options

6.1. Interest rates: market structure, and types of prediction sets

6.2. The effect of interest rates: the case of the Ornstein-Uhlenbeck

model

6.3. General European options

6.4. General European options: The case of two intervals and a zero

coupon bond

6.5. Proofs for Section 6

7. Prediction sets and the interpolation of options

7.1. Motivation

7.2. Interpolating European payoffs

7.3. The case of European calls

7.4. The usefulness of interpolation

7.5. Proofs for Section 7

8. Bounds that are not based on prediction sets



1

1. Introduction.

1.1. Pricing bounds, trading strategies, and exit strategies. In the presence of statistical

uncertainty, what bounds can one set on derivatives prices? This is particularly important when

setting reserve requirements for derivatives trading.

To analyze this question, suppose we find ourselves at a time t = 0, with the following situ-

ation:

A Past: Information has been collected up to and including time t = 0. For the purpose of

this paper, this is mainly historical statistical/econometric information (we use the terms inter-

changeably). It could also, however, include cross-sectional implied quantities. Or well informed

subjective quantifications.

The Present: We wish to value a derivative security, or portfolio of securities, whose final payoff

is η. This could be for a purchase or sale, or just to value a book. In addition to other valuations

of this instrument, we would like a safe bound on its value. If the derivative is a liability, we need

an upper bound, which we call A. If it is an asset, the relevant quantity is a lower bound, call it

B. We wish to attach probability 1 − α, say 95 %, to such a bound.

The standard approach of options theory is to base prices on trading strategies. If we adopt

this paradigm, bounds would also be based on such strategies. We suppose there are underlying

market traded securities S
(1)
t , ..., S

(p)
t , as well as a money market bond βt = exp{

∫ t
0 rudu}, that can

be made use of. This leads to a consideration of

The Future: Consider the case of the upper bound A. We consider lower bounds later. A trading

based approach would be the following. A would be the smallest value for which there would

exist a portfolio At, self financing in the underlying securities, so that A0 = A and AT ≥ η with

probability at least 1−α. We shall see important examples in Sections 3, 6, and 7, and give precise

mathematical meaning to these concepts in Sections 4, and 5.

The bound A is what it would cost to liquidate the liability η through delta hedging. It

is particularly relevant as it provides and exit strategy in the event of model failure when using

standard calibration methods. This is discussed in Section 2.3.
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Our approach, therefore, is to find A by finding a trading strategy. How to do the latter is

the problem we are trying to solve.

The question of finding such a bound might also come up without any statistical uncertainty.

In fact, one can usefully distinguish between two cases, as follows. We let P be the actual proba-

bility distribution of the underlying processes. Now distinguish between

(1) the “probabilistic problem”: P is fixed and known, but there is incompleteness or other barriers

to perfect hedging. Mostly, this means that the “risk neutral probability” P ∗ (Harrison and Kreps

(1979), Harrison and Pliskà (1981), and Delbaen and Schachermayer (1994, 1995)) is unknown (see

Section 1.2 for further discussion); and

(2) the “statistical problem”: P is not known.

This article is about problem (2). We shall be interested in the problem seen from the

perspective of a single actor in the market, who could be either an investor, or a regulator. In

our development, we shall mostly not distinguish between parameter uncertainty and model un-

certainty. In most cases, the model will implicitly be uncertain. We are mainly interested in

the forecasting problem (standing at time t = 0 and looking into the future). There are addi-

tional issues involved in actually observing quantities like volatility contemporaneously. These are

discussed in Sections 3.4-3.5, but are not the main focus in the following.

There are, in principle, several ways of approaching Problem (2). There are many models and

statistical methods available to estimate features of the probability P (see the end of Section 1.2)

and hence the value A (see Section 8). We shall here mainly be concerned with the use of prediction

sets, as follows. A prediction set C is established at time t = 0 and concerns the behavior of, say,

volatility in the time interval [0, T ]. One possible form of C is the set {Ξ− ≤
∫ T
0 σ2

t dt ≤ Ξ+} (cf.

(2.3) below), and this will be our main example throughout. Another candidate set is given in

(2.2) below, and any number of forms are possible. Further examples, involving interest rates, are

discussed in Section 6. One can also incorporate other observables (such as the leverage effect) into

a prediction set. The set C (in the example, Ξ− and Ξ+) is formed using statistical methods based

on the information up to and including time zero. The prediction set has (Bayesian or frequentist)

probability at least 1−α (say, 95%) of being realized. In our approach, the upper bound of the price

of a derivative security is the minimal starting value (at time t = 0) for a nonparametric trading
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strategy that can cover the value of the security so long as prediction set is realized. The lower

bound is similarly defined. In this setup, therefore, the communication between the statistician

and the trader happens via the prediction set. Our main candidate for setting prediction intervals

from data is the “decoupled” procedure described in Section 5.3. The procedure is consistent with

any (continuous process) statistical model and set of investor beliefs so long as one is willing to

communicate them via a prediction set. Investor preferences (as expressed, say, via a risk neutral

probability) do not enter into the procedure. The approach is based in large part on Avellaneda,

Levy and Paras (1995), Lyons (1995), and Mykland (2000, 2003a,b,2005).

The philosophical stance in this article is conceptually close to that of Hansen and Sargent

(2001, 2008 and the references therein), who in a series of articles (and their recent book) have

explored the application of robust control theory as a way of coping with model uncertainty. As

in their work, we stand at time zero, and are facing model uncertainty. Uncertainty is given

by a bound (see, for example, the constraint (2.2.4) on p. 27 of Hansen and Sargent (2008),

and compare to (2.2), (2.3) and the definition of super-replication below). We assume a possibly

malevolent nature, and take a worst case approach to solving the problem (ibid, Chapter 1.10 and

2.2, compare to definition (2.5) below). Also, we do not assume that there is learning while the

replication process is going on, between time 0 and T , and rationales for this are discussed in ibid,

Chapter 1.12. An additional rationale in our case is that learning during the process may create

a multiple-comparison situation when setting the prediction set, and this may actually widen the

price bounds at time zero. In contrast with Hansen and Sargent’s work, our bound is imposed

either on a future realization or on the probability thereof (probability of failure), while Hansen

and Sargent impose bounds on entropy. It would be a nice future project to try to compare these

two approaches in more depth.

The set of possible probabilities P that we consider is highly nonparametric. Some regularity

conditions aside, it will only be required that securities prices are continuous semimartingales under

P , and that the conditional probability of the prediction set C given the information at time t = 0

is at least 1 − α. In particular, it should be emphasized that volatility is allowed to be stochastic

with unknown governing equations.
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We emphasize that our approach is different from trying to estimate options prices either

through econometrics or calibration. There is a substantial model based literature, including

Heston (1993), Bates (2000), Duffie, Pan and Singleton (2000), Pan (2001), Carr, Madan, Geman,

and Yor (2004), see also the study by Bakshi, Cao and Chen (1997). Alternatively, one can

proceed nonparametrically, as in Äıt-Sahalia and Lo (1998). A rigorous econometric framework

for assessing prices is in development, and for this we refer to Garcia, Ghysels and Renault (2009?)

in this volume for further discussion and references.

Perhaps the most standard approach, as practiced by many banks and many academics, uses

calibration. It goes as follows. Pick a suitable family of risk neutral distributions P ∗ (normally cor-

responding to several actual P ’s), and calibrate it cross-sectionally to the current value of relevant

market traded options. The upside to the calibration approach is that it attempts to mark deriva-

tives prices to market. The downside is that a cross-section of todays’ prices does not provide much

information about the behavior over time of price processes, a point made (in greater generality) by

Bibby, Skovgaard and Sørensen (2005). The problem is also revealed in that “implied” parameters

in models typically change over time, even when the model supposes that they are constant. This

problem does not seem to have led to severe difficulties in the case of simple European options

on market traded securities, and this is perhaps in part because of the robustness documented in

Section 3.2 below. However, the calibration procedure would seem to have been partly to blame

for the (at the time of writing) recent meltdown in the market for collateralized debt obligations,

which are less transparent and where valuations may thus have been more dependent on arbitrary

model choices.

The decision problems faced by the investor and the regulator may therefore require the

use of multiple approaches. The bounds in this article need not necessarily be used to set prices,

they can alternatively be used to determine reserve requirements that are consistent with an exit

strategy, see Section 2.3 below. One possible form of organization may be that regulators use our

bounds to impose such reserve requirements, while investors rely on the calibration approach to

take decisions to maximize their utility. As shown in Section 2.3, the bound-based reserves permit

the investor to fall back on a model free strategy in the case where the more specific (typically
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parametric) model fails. The main contribution of this article is thus perhaps to provide an exit

strategy when traditional calibration has gone wrong.

It would be desirable if the setting of prices and the setting of reserves could be integrated

into a single procedure. For example, in a fully Bayesian setting, this may possible. Concerns that

would have to be overcome to set up such a procedure include the difficulty in setting priors on

very large spaces (see, for example, Diaconis and Freedman (1986a,1986b)), and our space is large

indeed (the set of all Rq valued continuous functions on [0, T ]). Further difficulties arising from an

economics perspective can be found in Lucas (1976), see also Chapter 1.11 in Hansen and Sargent

(2008). We do not rule out, however, the possibility that such an approach will eventually be found.

Also, we once again emphasize that Bayesian methods can be used to find the the prediction set

in our method. See Section 3.5 for an example.

1.2. Related problems and related literature. In addition to the work cited above, there is a

wealth of problems related to the one considered in this article. The following is a quick road map

to a number of research areas. The papers cited are just a small subset of the work that exists in

these areas.

First of all, a substantial area of study has been concerned with the “probabilistic” problem

(1) above. P is known, but due to some form of incompleteness or other barrier to perfect hedg-

ing, there are either several P ∗s, or one has to find methods of pricing which do not involve a

risk-neutral measure. The situation (1) most basically arises when there are not enough securities

to complete the market, in particular when there are too many independent Brownian motions

driving the market, when there are jumps of unpredictable size in the prices of securities, or in

some cases when there is bid-ask spread (see, e.g., Jouini and Kallal (1995)). This situation can

also arise due to transaction cost, differential cost of borrowing and lending, and so on. Strate-

gies in such circumstances include super-hedging (Cvitanić and Karatzas (1992, 1993), Cvitanić,

Pham and Touzi (1998, 1999), El Karoui and Quenez (1995), Eberlein and Jacod (1997), Karatzas

(1996), Karatzas and Kou (1996, 1998), and Kramkov (1996)), mean variance hedging (Föllmer

and Schweizer (1991), Föllmer and Sondermann (1986), Schweizer (1990, 1991, 1992, 1993, 1994),

and later also Delbaen and Schachermayer (1996), Delbaen, Monat, Schachermayer, Schweizer and
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Stricker (1997), Laurent and Pham (1999), and Pham, Rheinländer, and Schweizer (1998)), and

quantile style hedging (see, in particular, Külldorff (1993), Spivak and Cvitanić (1998), and Föllmer

and Leukert (1999, 2000)).

It should be noted that the P known and P unknown cases can overlap in the case of

Bayesian statistical inference. Thus, if P is a statistical posterior distribution, quantile hedging

can accomplish similar aims to those of this article. Also, the methods from super-hedging are

heavily used in the development here.

Closely connected to super-hedging (whether for P known or unknown) is the study of

robustness, in a different sense from Hansen and Sargent (2001, 2008). In this version of robustness,

one does not try to optimize a starting value, but instead one takes a reasonable strategy and sees

when it will cover the final liability. Papers focusing on the latter include Bergman, Grundy and

Wiener (1996), El Karoui, Jeanblanc-Picqué and Shreve (1998), and Hobson (1998a).

There are also several other methods for considering bounds that reflect the riskiness of a

position. Important work includes Lo (1987), Bergman (1995), Constantinides and Zariphopoulou

(1999, 2001), Friedman (2000), and Fritelli (2000). A main approach here is to consider risk

measures Artzner, Delbaen, Eber and Heath (1999), Cvitanić and Karatzas (1999), Cont (2006)

and Föllmer and Schied (2002). In general, such measures can cover either the P known or or P

unknown cases. In particular, Cont (2006) addresses the latter, with a development which is close

to Mykland (2003a). Of particular interest are so-called coherent risk measures (going back to

Artzner, Delbaen, Eber and Heath (1999)), and it should be noted that the bounds in the current

article are indeed coherent when seen as measures of risk. (This is immediate from definition (2.5)

below.) Another kind of risk measure is Value at Risk. We here refer to Gourieroux and Jasiak

(2009?) in this volume for further elaboration and references.

This article assumes that securities prices are continuous processes. Given the increasing

popularity of models with jumps (such as in several of the papers cited in connection with cali-

bration in Section 1.1 ), if would be desirable to extend the results to the discontinuous case. We

conjecture that the technology in this paper can be extended thus, in view of the work of Kramkov

(1996) in the P -known setting. It should also be noted that the worst case scenario often happens
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along continuous paths, cf. the work of Hobson (1998b). This is because of the same Dambis

(1965)/Dubins-Schwartz (1965) time change which is used in this paper.

Finally, this paper is mostly silent on what methods of statistical inference which should be

used to set the prediction intervals that are at the core of this methodology. Our one application

with data (in Section 3.5) is meant to be a toy example. Since our main recommendation is to

set prediction intervals for volatility, a large variety of econometric methods can be used. This

includes the ARCH and GARCH type models, going back to the seminal papers of Engle (1982) and

Bollerslev (1986). There is a huge literature in this area, see, for example the surveys by Bollerslev,

Chou and Kroner (1992), Bollerslev, Engle and Nelson (1994), and Engle (1995). See also Engle

and Sun (2005). One can also do inference directly in a continuous time model, and here important

papers include Äıt-Sahalia (1996, 2002), Äıt-Sahalia and Mykland (2003), Barndorff-Nielsen and

Shephard (2001), Bibby and Sørensen (1995, 1996a,b), Conley, Hansen, Luttmer and Scheinkman

(1997), Dacunha-Castelle and Florens-Zmirou (1986), Danielsson (1994), Florens-Zmirou (1993),

Genon-Catalot and Jacod (1994), Genon-Catalot, Jeantheau and Laredo (1999, 2000), Hansen and

Scheinkman (1995), Hansen, Scheinkman and Touzi (1998), Jacod (2000), Kessler and Sørensen

(1999), and Küchler and Sørensen (1998). Inference in continuous versions of the GARCH model

is studied by Drost and Werker (1996), Haug, Klüppelberg, Lindner and Zapp (2007), Meddahi

and Renault (2004), Meddahi, Renault and Werker (2006), Nelson (1990), and Stelzer (2008); see

also the review in Lindner (2008). On the other hand, the econometrics of discrete time stochastic

volatility models is discussed in Harvey and Shephard (1994), Jacquier, Polson and Rossi (1994).

Kim, Shephard, and Chib (1998), Ruiz (1994), and Taylor (1994). A review of GMM (Hansen

(1982)) based inference in such models is given in Renault (2008). The cited papers are, of course,

only a small sample of the literature available.

An alternative has begun to be explored in Andersen and Bollerslev (1998), Meddahi (2001),

Andersen, Bollerslev, Diebold and Labys (2001, 2003), Dacorogna, Gençay, Müller, Olsen and

Pictet (2001), Äıt-Sahalia and Mancini (2006), Andersen, Bollerslev, and Meddahi (2006), and

Ghysels and Sinko (2006), which takes estimated daily volatilities as “data”. This scheme may not

be as efficient as fitting a model directly to the data, but it may be more robust. This procedure

is, in turn, based on recent developments in the estimation of volatility from high frequency data,
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which is discussed, with references, in Section 3.4 below. In summary, however, the purpose of this

article is to enable econometric methods as a device to set bounds on derivatives prices, and we do

not particularly endorse one method over another.

The approach based on prediction sets is outlined in the next section. Section 3 provides

the original examples of such sets. A more theoretical framework is laid in Sections 4-5. Section

6 considers interest rates, and Section 7 the effect of market traded options. The incorporation of

econometric or statistical conclusions is discussed in Sections 5.3 and 8.

2. Options hedging from prediction sets: Basic description.

2.1. Setup, and super-self financing strategies. The situation is described in the introduc-

tion. We have collected data. On the basis of these, we are looking for trading strategies in

S
(1)
t , ..., S

(p)
t , βt, where 0 ≤ t ≤ T , that will super-replicate the payoff with probability at least

1 − α.

The way we will mostly go about this is to use the data to set a prediction set C, and then

to super-replicate the payoff on C. A prime instance would be to create such sets for volatilities,

cross-volatilities, or interest rates. If we are dealing with a single continuous security S, with

random and time varying volatility σt at time t, we could write

dSt = mtStdt + σtStdBt, (2.1)

where B is a Brownian motion. The set C could then get the form

• Extremes based bounds (Avellaneda, Levy and Paras (1995), Lyons (1995)):

σ− ≤ σt ≤ σ+ (2.2)

• Integral based bounds (Mykland (2000, 2003a,b, 2005)):

Ξ− ≤
∫ T

0
σ2

t dt ≤ Ξ+. (2.3)

There is a wide variety of possible prediction sets, in particular when also involving the interest

rate, cf. Section 6.
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It will be convenient to separate the two parts of the concept of super-replication, as we see

in the following.

As usual, we call X∗
t the discounted process Xt. In other words, X∗

t = β−1
t Xt, and vice

versa. In certain explicitly defined cases, discounting may be done differently, for example by a

zero coupon bond (cf. Section 6 in this paper, and El Karoui, Jeanblanc-Picqué and Shreve (1998)).

A process Vt, 0 ≤ t ≤ T , representing a dynamic portfolio of the underlying securities, is said

to be a super-self financing portfolio provided there are processes Ht and Dt, so that, for all t,

0 ≤ t ≤ T ,

Vt = Ht + Dt, 0 ≤ t ≤ T, (2.4)

where D∗
t is a non-increasing process, and where Ht is self financing in the traded securities

S
(1)
t , ..., S

(p)
t . In other words, one may extract dividend from a super-self financing portfolio, but

one cannot add funds.

“Self financing” means, by numeraire invariance (see, for example, Section 6.B of Duffie

(1996)), that H∗
t can be represented as a stochastic integral with respect to the S

(i)∗
t ’s, subject to

regularity conditions to eliminate doubling strategies. There is some variation in how to implement

this (see, e.g., Duffie (1996), Chapter 6.C (p. 103-105)). In our case, a “hard” credit restriction is

used in Section 5.1, and a softer constraint is used in Section 4.2.

On the other hand, Vt is a sub-self financing portfolio if it admits the representation (2.4)

with D∗
t as nondecreasing instead.

For portfolio V to super-replicate η on the set C, we would then require

(i) V is a super-self financing strategy

and

(ii) solvency: VT ≥ η on C

If one can attach a probability, say, 1−α, to the realization of C, then 1−α is the prediction

probability, and C is a 1 − α prediction set. The probability can be based on statistical methods,

and be either frequentist or Bayesian.

Definition. Specifically, C is a 1− α prediction set, provided P (C | H) ≥ 1− α, P − a.s..

Here either (i) P ( · | H) is a Bayesian posterior given the data at time zero, or (ii) in the
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frequentist case, P describes a class of models, and H represents an appropriate subset of the

information available at time zero (the values of securities and other financial quantities, and

possibly ancillary material). α can be any number in [0, 1).

The above is deliberately vague. This is for reasons that will become clear in Sections 5.3

and 8, where the matter is pursued further.

For example, a prediction set will normally be random. Given the information at time zero,

however, C is fixed, and we treat it as such until Section 5.3. Also, note that if we extend “Bayesian

probability” to cover general belief, our definition of a prediction set does not necessarily imply an

underlying statistical procedure.

The problem we are trying to solve is as follows. We have to cover a liability η at a non random

time T . Because of our comparative lack of knowledge about the relevant set of probabilities, a

full super-replication (that works with probability one for all P ) would be prohibitively expensive,

or undesirable for other reasons. Instead, we require that we can cover the payoff η with, at least,

the same (Bayesian or frequentist) probability 1−α. Given the above, if the set C has probability

1−α, then also VT ≥ η with probability at least 1−α, and hence this is a solution to our problem.

Technical Point. All processes, unless otherwise indicated, will be taken to be càdlàg,

i.e., right continuous with left limits. In Sections 1-3, we have ignored what probabilities are used

when defining stochastic integrals, or even when writing statements like “VT ≥ η”, which tend to

only be “almost sure”. Also, the set C is based on volatilities which are only defined relative to a

probability measure. And there is no mention of filtrations. Discussion of these matters is deferred

until Sections 4 and 5.

2.2. The bounds A and B. Having defined super-replication for a prediction set, we would

now like the cheapest such super replication. This defines A.

Definition. The conservative ask price (or offer price) at time 0 for a payoff η to be made

at a time T is

A = inf{V0 : (Vt) is a super-replication on C of the liability η}. (2.5)
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The definition is in analogy to that used by Cvitanić and Karatzas (1992, 1993), El Karoui

and Quenez (1995), and Kramkov (1996). It is straightforward to see that A is a version of “value

at risk” (see Chapter 14 (pp. 342-365) of Hull (1999)) that is based on dynamic trading. At the

same time, A is coherent in the sense of Artzner, Delbaen, Eber and Heath (1999).

It would normally be the case that there is a super-replication At so that A0 = A, and

we argue this in Section 4.1. Note that in the following, Vt denotes the portfolio value of any

super-replication, while At is the cheapest one, provided it exists.

Similarly, the conservative bid price can be defined as the supremum over all sub-replications

of the payoff, in the obvious sense. For payoff η, one would get

B(η) = −A(−η), (2.6)

in obvious notation, and subject to mathematical regularity conditions, it is enough to study ask

prices. More generally, if one already has a portfolio of options, one may wish to charge or set

reserves A(portfolio + η) − A(portfolio) for the payoff η.

But is A the starting value of a trading strategy? And how does one find A?

Suppose that P∗ is the set of all risk neutral probabilities that allocate probability one to

the set C. And suppose that P∗ is nonempty. If we set

η∗ = β−1
T η, (2.7)

and if P ∗ ∈ P∗, then E∗(η∗) is a possible price that is consistent with the prediction set C. Hence

a lower bound for A is

A
′ = sup

P ∗∈P∗

E∗(η∗). (2.8)

It will turn out that in many cases, A = A′. But A′ is also useful in a more primitive way.

Suppose one can construct a super-replication Vt on C so that V0 ≤ A′. Then Vt can be taken as

our super-replication At, and A = V0 = A′.

We shall see two cases of this in Section 3.
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2.3. The practical rôle of prediction set trading: reserves, and exit strategies. How does one

use this form of trading? If the prediction probability 1−α is set too high, the starting value may

be too high given the market price of contingent claims.

There are, however, at least three other ways of using this technology. First of all, it is not

necessarily the case that α need to be set all that small. A reasonable way of setting hedges might

be to use a 60% or 70% prediction set, and then implement the resulting strategy. It should also

be emphasized that an economic agent can use this approach without necessarily violating market

equilibrium, cf. Heath and Ku (2004).

On the other hand, one can analyze a possible transaction by finding out what is the smallest

α for which a conservative strategy exists with the proposed price as starting value. If this α is

too large, the transaction might be better avoided.

A main way of using conservative trading, however, is as a backup device for other strategies,

and this is what we shall discuss in the following.

We suppose that a financial institution sells a payoff η (to occur at time T ), and that a

trading strategy is established on the basis of whatever models, data, or other considerations that

the trader or the institution wishes to make. We shall call this the “preferred” strategy, and refer

to its current value as Vt.

On the other hand, we also suppose that we have established a conservative strategy, with

current value At, where the relevant prediction interval has probability 1−α. We also assume that

a reserve is put in place in the amount of K units of account, where

K > A0 − V0 .

The overall strategy is then as follows. One uses the preferred strategy unless or until it eats up the

excess reserve over the conservative one. If or when that happens, one switches to the conservative

strategy. In other words, one uses the preferred strategy until

τ = inf{ t : K = A∗
t − V ∗

t } ∧ T
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where the superscript “∗” refers, as before, to discounting with respect to whatever security the

reserve is invested in. This will normally be a money market account or the discount bond Λt.

The symbol a ∧ b means min(a, b).

This trading strategy has the following desirable properties:

• If the prediction set is realized, the net present value of the maximum loss is

V0 + K − actual sales price of the contingent claim .

• If the reserves allocated to the position are used up, continuing a different sort of hedge

would often be an attractive alternative to liquidating the book.

• The trader or the institution does not normally have to use conservative strategies. Any

strategy can be used, and the conservative strategy is just a backup.

The latter is particularly important because it does not require any interference with any

institution’s or trader’s standard practice unless the reserve is used up. The trader can use what

she (or Risk Management) thinks of as an appropriate model, and can even take a certain amount

of directional bets. Until time τ .

The question of how to set the reserve K remains. From a regulatory point of view, it

does not matter how this is done, and is more a reflection of the risk preferences of the trader or

the institution. There will normally be a trade-off in that expected return goes up with reserve

level K. To determine an appropriate reserve level one would have to look at the actual hedging

strategy used. For market traded or otherwise liquid options one common strategy is to use implied

volatility (Beckers (1981), Bick and Reisman (1993)), or other forms of calibration. The level K

can then be evaluated by empirical data. If a strategy is based on theoretical considerations, one

can evaluate the distribution of the return for given K based on such a model.
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3. Options hedging from prediction sets: The original cases. Suppose that a stock

follows (2.1) and pays no dividends, and that there is a risk free interest rate rt. Both σt and rt can

be stochastic and time varying. We put ourselves in the context of European options, with payoff

f(ST ). For future comparison, note that when r and σ are constant, the Black-Scholes(1973)-

Merton(1973) price of this option is B(S0, rT, σ
√

T ), where

B(S,Ξ, R) = exp(−R)Ef(S exp(R − Ξ/2 +
√

ΞZ)), (3.1)

and where Z is standard normal (see, for example, Ch. 6 of Duffie (1996)). In particular, for the

call payoff f(s) = (s − K)+,

B(S,Ξ, R) = SΦ(d1) − K exp(−R)Φ(d2), (3.2)

where

d1 = (log(S/K) + R + Ξ/2) /
√

Ξ (3.3)

and d2 = d1 −
√

Ξ. This will have some importance in the future discussion.

3.1. Point-wise bounds. This goes back to Avellaneda, Levy, and Paras (1995) and Lyons

(1995). See also Frey and Sin (1999) and Frey (2000). In the simplest form, one lets C be the set

for which

σtǫ[σ−, σ+] for all tǫ[0, T ], (3.4)

and we let rt be non-random, but possibly time varying. More generally, one can consider bounds

on the form

σ−(St, t) ≤ σt ≤ σ+(St, t) (3.5)

A super-replicating strategy can now be constructed for European options based on the

“Black-Scholes-Barenblatt” equation (cf. Barenblatt (1978)). The price process V (St, t) is found

by using the Black-Scholes partial differential equation, but the term containing the volatility takes

on either the upper or lower limit in (3.5), depending on the sign of the second derivative VSS(s, t).

In other words, V solves the equation

r(V − VSS) = ∂V
∂t + 1

2S2 max
(3.5)

(σ2
t VSS), (3.6)
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with the usual boundary condition V (ST , T ) = f(ST ).

The rationale for this is the following. By Itô’s Lemma, and assuming that the actual realized

σt satisfies (3.5), dVt becomes:

dV (St, t) = VSdSt + ∂V
∂t dt +

1

2
VSSS2

t σ2
t dt

≤ VSdSt + ∂V
∂t dt + 1

2S2 max
(3.5)

(σ2
t VSS)dt

= VSdSt + (V − VSSt)β
−1
t dβt, (3.7)

in view of (3.6). Hence Vt = V (St, t) is the value of a super-self financing portfolio, and it covers

the option liability by the boundary condition.

To see the relationship to (2.4), note that the process Dt has the form

D∗
t = −1

2

∫ t

0
S2

u

(
max
(3.5)

(σ2
t VSS) − σ2

t VSS

)
du. (3.8)

This is easily seen by considering (3.6)-(3.7) on the discounted scale.

The reason why V0 can be taken to be A, is that the stated upper bound coincides with the

price for one specific realization of σt that is inside the prediction region. Hence, also, Vt can be

taken to be At.

Pointwise bounds have also been considered by Bergman, Grundy and Wiener (1996), El

Karoui, Jeanblanc-Picqué and Shreve (1998), and Hobson (1998a), but these papers have concen-

trated more on robustness than on finding the lowest price A.

3.2. Integral bounds. This goes back to Mykland (2000), and for the moment, we only

consider convex payoffs f (as in puts and calls). The interest rate can be taken to be random, in

which case f must also be increasing (as in calls). More general formulae are given in Sections

6.3-6.4. The prediction set C has the form

R0 ≥
∫ T

0
rudu and Ξ0 ≥

∫ T

0
σ2

udu. (3.9)

Following Section 2.2, we show that A = B(S0, R0,Ξ0) and that a super-replication At exists.
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Consider the instrument whose value at time t is

Vt = B(St,Ξt, Rt), (3.10)

where

Rt = R0 −
∫ t

0
rudu and Ξt = Ξ0 −

∫ t

0
σ2

udu. (3.11)

In equation (3.11), rt and σt are the actual observed quantities. As mentioned above, they can be

time varying and random.

Our claim is that Vt is exactly self financing. Note that, from differentiating (3.1),

1

2
BSSS2 = BΞ and − BR = B − BSS. (3.12)

Also, for calls and puts, the first of the two equations in (3.12) is the well known relationship

between the “gamma” and the “vega” (cf., for example, Chapter 14 of Hull (1997)).

Hence, by Itô’s Lemma, dVt equals:

dB(St,Ξt, Rt) = BSdSt +
1

2
BSSS2

t σ2
t dt + BΞdΞt + BRdRt

= BSdSt + (B − BSSt)rtdt

+ [
1

2
BSSS2

t − BΞ]σ2
t dt

+ [B − BSSt − BR]rtdt. (3.13)

In view of (3.12), the last two lines of (3.13) vanish, and hence there is a self financing hedging

strategy for Vt in St and βt. The “delta” (the number of stocks held) is B′
S(St,Ξt, Rt).

Furthermore, since B(S,Ξ, R) is increasing in Ξ and R, (3.9) yields that

VT = B(ST ,ΞT , RT )

≥ lim
Ξ↓0,R↓0

B(ST ,Ξ, R)

= f(ST ) (3.14)

almost surely. In other words, one can both synthetically create the security Vt, and one can use

this security to cover one’s obligations. Note that if rt is nonrandom (but can be time varying),

there is no limit in R in (3.14), and so f does not need to be increasing.
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The reason why V0 can be taken to be A is the same as in section 3.1. Also, the stated

upper bound coincides with the Black-Scholes (1973)-Merton (1973) price for constant coefficients

r = R0/T and σ2 = Ξ0/T . This is one possible realization satisfying the constraint (3.9). Also, Vt

can be taken to be At.

3.3. Comparison of approaches. The main feature of the two approaches described above is

how similar they are. Apart from having all the features from Section 2, they also have in common

that they work “independently of probability”. This, of course, is not quite true, since stochastic

integrals require the usual probabilistic setup with filtrations and distributions. It does mean,

however, that one can think of the set of possible probabilities as being exceedingly large. A stab

at an implementation of this is given in Section 5.1.

And then we should discuss the differences. To start on a one sided note, consider first the

results in Table 1 for convex European payoffs.

Table 1

Comparative prediction sets for convex European options: r constant

device prediction set A0 at time 0 delta at time t

Black-Scholes: σ constant B(S0, σ
2T, rT ) ∂B

∂S (St, σ
2(T − t), , r(T − t))

average based: Ξ− ≤
∫ T
0 σ2

udu ≤ Ξ+ B(S0,Ξ
+, rT ) ∂B

∂S (St,Ξ
+ −

∫ t
0 σ2

udu, r(T − t))

extremes based: σ− ≤ σt ≤ σ+ B(S0, (σ
+)2T, , rT ) ∂B

∂S (St, σ
2
+(T − t), , r(T − t))

B is defined in (3.2)-(3.3) for call options, and more generally in (3.1). A0 is the conservative price

(2.5). Delta is the hedge ratio (the number of stocks held at time t to super-hedge the option).

To compare these approaches, note that the function B(S,Ξ, R) is increasing in the argument

Ξ. It will therefore be the case that the ordering in Table 1 places the lowest value of A0 at the top

and the highest at the bottom. This is since σ2T ≤ Ξ+ ≤ σ2
+T . The latter inequality stems from

the fact that Ξ+ is a prediction bound for an integral of a process, while σ2
+ is the corresponding

bound for the maximum of the same process. In this case, therefore, the average based interval is

clearly better than the extremes based one in that it provides a lower starting value A0.
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But Table 1 is not the full story. This ordering of intervals may not be the case for options that

are not of European type. For example, caplets (see Hull (1999), p. 538) on volatility would appear

be better handled through extremes based intervals, though we have not investigated this issue.

The problem is, perhaps, best understood in the interest rate context, when comparing caplets

with European options on swaps (“swaptions”, see Hull (1999), p. 543). See Carr, Geman and

Madan (2001) and Heath and Ku (2004) for a discussion in terms of coherent measures of risk. To

see the connection, note that the average based procedure, with starting value A0 = B(S0, rT,Ξ+),

delivers an actual payoff AT = B(ST , , 0,Ξ+−
∫ T
0 σ2

udu). Hence AT not only dominates the required

payoff f(ST ) on C, but the actual AT is a combination of option on the security S and swaption

on the volatility, in both cases European.

Another issue when comparing the two approaches is how one sets the hedge in each case.

In Section 3.2, one uses the actual σt (for the underlying security) to set the hedge. In Section

3.1, on the other hand, the hedge itself is based on the worst case non-observed volatility. In both

cases, of course, the price is based on the worst case scenario.

3.4. Trading with integral bounds, and the Estimation of consumed volatility. Volatility is

not strictly speaking observable. If one wishes to trade based on the integral based bounds from

Section 3.2, the hedge ratio (delta) at time t, ∂B
∂S (St,Ξ

+ −
∫ t
0 σ2

udu, r(T − t)), is also not quite

observable, but only approximable to a high degree of accuracy.

We here tie in to the literature on realized volatility. It is natural to approximate the integral

of σ2
t by the observed quadratic variation of log S. Specifically, suppose at time t that one has

recorded log Sti for 0 = t0 < ... < tn ≤ t (the ti can be transaction times, or times of quote changes,

or from some more regular grid). The observed quadratic variation, a.k.a. the realized volatility,

is then given by

Ξ̂t =
n∑

i=1

(log Sti − log Sti−1)
2. (3.15)

See Andersen and Bollerslev (1998), Andersen (2000), and Dacorogna, Gençay, Müller, Olsen and

Pictet (2001) for early econometric contributions on this. The quantity Ξ̂t converges in probability

to
∫ t
0 σ2

udu as the points ti become dense in [0, t], cf. Theorem I.4.47 (p.52) of Jacod and Shiryaev

(1987). Note that the limit of (3.15) is often taken as the definition of the integrated volatility,
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and is then denoted by [log S, log S]t. This is also called the (theoretical) quadratic variation of

log S. More generally, the quadratic covariation between processes X and Y is given by

[X,Y ]t = limit in probability of
n∑

i=1

(Xti − Xti−1)(Yti − Yti−1) (3.16)

as ∆t → 0. The convergence of Ξ̂t to Ξ has been heavily investigated in recent years, see, in

particular, Jacod and Protter (1998), Barndorff-Nielsen and Shephard (2002), Zhang (2001) and

Mykland and Zhang (2006). Under mild regularity conditions, it is shown that Ξ̂t −
∫ t
0 σ2

udu =

Op(∆t1/2), where ∆t is the average distance t/n. It is furthermore the the case that ∆t−1/2(Ξ̂t −
∫ t
0 σ2

udu) converges, as a process, to a limit which is an integral over a Brownian motion. The

convergence in law is “stable”. For further details, consult the cited papers.

Subsequent research has revealed that these orders of convergence are optimistic, due to

microstructure noise in prices. In this case, rates of convergence of ∆1/6 (Zhang, Mykland and Äıt-

Sahalia (2005)) and ∆1/4 (Zhang (2006), Barndorff-Nielsen, Hansen, Lunde and Shephard (2008),

Jacod, Li, Mykland, Podolskij and Vetter (2008)) have been found. The estimator Ξ̂t is also more

complicated in these cases, and we refer to the cited papers for details. We also refer to Andersen,

Bollerslev and Diebold (2009?) in this volume for further discussion and references on realized

volatility.

Given a suitable estimator Ξ̂t, the natural hedge ratio at time t for the average based proce-

dure would therefore be

∂B
∂S (St,Ξ

+ − Ξ̂t, , r(T − t)). (3.17)

The order or convergence of Ξ̂t − Ξt would also be the order of the hedging error relative to

using the delta given in Table 1. How to adjust the prediction interval accordingly, remains to be

investigated.

The fact that volatility is only approximately observable may also have an impact on how to

define the set of risk neutral measures. In fact, under discrete observation, the set of risk neutral

measures that survive even asymptotically as ∆t → 0, is quite a bit larger than the standard set

of such measures. An investigation of this phenomenon in the econometric context is provided by

Mykland and Zhang (2007), but the ramifications for financial engineering remain to be explored.
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3.5. An implementation with data. We here demonstrate by example how one can take data,

create a prediction set, and then feed this into the hedging schemes above. We use the band from

Section 3.2, and the data analysis of Jacquier, Polson and Rossi (1994), which analyses (among

other series) the S&P 500 data recorded daily. The authors consider a stochastic volatility model

that is linear on the log scale:

d log(σ2
t ) = (a + b log(σ2

t ))dt + cdWt,

in other words, by exact discretization,

log(σ2
t+1) = (α + β log(σ2

t )) + γǫt,

where W is a standard Brownian motion and the ǫs are consequently i.i.d. standard normal. We

shall in the following suppose that the effects of interest rate uncertainty are negligible. With some

assumptions, their posterior distribution, as well as our corresponding options price, are given in

Table 2. We follow the custom of stating the volatility per annum and on a square root scale.

Table 2

S&P 500: Posterior distribution of Ξ =
∫ T
0 σ2

t dt for T = one year

Conservative price A0 corresponding to relevant coverage for at the money call option

posterior coverage 50% 80% 90% 95% 99%

upper end
√

Ξ .168 .187 .202 .217 .257
of posterior interval

conservative price A0 9.19 9.90 10.46 11.03 12.54

Posterior is conditional on log(σ2
0) taking the value of the long run mean of log(σ2). A0 is based

on prediction set (2.3) with Ξ− = 0. A 5 % p.a. known interest rate is assumed. S0 = 100.

In the above, we are bypassing the issue of conditioning on σ0. Our excuse for this is that σ0

appears to be approximately observable in the presence of high frequency data. Following Foster

and Nelson (1996), Zhang (2001), and Mykland and Zhang (2008), the error in observation is of the

order Op(∆t1/4), where ∆t is the average distance between observations. This is in the absence of
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microstructure; if there is microstructure, Mykland and Zhang (2008) obtains a rate of Op(∆t1/12),

and conjecture that the best achievable rate will be Op(∆t1/8). Comte and Renault (1998) obtain

yet another set of rates when σt is long range dependent. What modification has to be made to

the prediction set in view of this error remains to be investigated. It may also be that it would be

better to condition on some other quantity than σ0, such as an observable σ̂0.

The above does not consider the possibility of also hedging in market traded options. We

return to this in Section 7.

4. Properties of trading strategies.

4.1. Super-self financing and supermartingale. The analysis in the preceding sections has

been heuristic. In order to more easily derive results, it is useful to set up a somewhat more

theoretical framework. In particular, we are missing a characterization of what probabilities can

be applicable, both for the trading strategies, and for the candidate upper bound (2.8).

The discussion in this section will be somewhat more general than what is required for pure

prediction sets. We also make use of this development in Section 7 on interpolation, and in Section

8 on (frequentist) confidence and (Bayesian) credible sets. Sharper results, that pertain directly

to the pure prediction set problem, will be given in Section 5.

We consider a filtered space (Ω,F ,Ft)0≤t≤T . The processes S
(1)
t , ..., S

(p)
t , rt and βt =

exp{
∫ t
0 rudu} are taken to be adapted to this filtration. The S(i)’s are taken to be continuous,

though similar theory can most likely be developed in more general cases.

P is a set of probability distributions on (Ω,F).

Definition. A property will be said to hold P − a.s. if it holds P − a.s. for all P ∈ P .

“Super-self financing” now means that the decomposition (2.4) must be valid for all P ∈ P ,

but note that H and D may depend on P . The stochastic integral is defined with respect to each

P , cf. Section 4.2.

To give the general form of the ask price A, we consider an appropriate set P∗ of “risk

neutral” probability distributions P ∗.
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Definition. Set

N = {C ⊆ Ω : ∀P ∈ P ∃EǫF : C ⊆ E and P (E) = 0}. (4.1)

P∗ is now defined as the set of probability measures P ∗ on F whose null sets include those in N ,

and for which S
(1)∗
t , ..., S

(p)∗
t are martingales. We also define Pe as the set of extremal elements

in P∗. P e is extremal in P∗ if P e ∈ P∗ and if, whenever P e = a1P
e
1 + a2P

e
2 for a1, a2 > 0 and

P e
1 , P e

2 ∈ P∗, it must be the case that P e = P e
1 = P e

2 . Note that P∗ is (typically) not a family of

mutually equivalent probability measures.

Subject to regularity conditions, we shall show that there is a super-replicating strategy At

with initial value A from (2.5).

First, however, a more basic result, which is useful for understanding super-self financing

strategies.

Theorem 4.1. Subject to the regularity conditions stated below, (Vt) is a super-self financ-

ing strategy if and only if (V ∗
t ) is a càdlàg supermartingale for all P ∗ ∈ P∗.

For example, the set P∗ can be the set of all risk neutral measures satisfying (2.2) or (2.3).

For further elaboration, see the longer example below in this section. Also, note that due to

possibly stochastic volatility, the approximate observability of local volatility (Section 3.5) does

not preclude a multiplicity of risk neutral measures P ∗.

A similar result to Theorem 4.1, obviously, applies to the relationship between sub-self fi-

nancing strategies and submartingales. We return to the regularity conditions below, but will for

the moment focus on the impact of this result. Note that the minimum of two, or even a countable

number, of supermartingales, remains a supermartingale. By Theorem 4.1, the same must then

apply to super-self financing strategies.

Corollary 4.2. Subject to the regularity conditions stated below, suppose that there exists

a super-replication of η on Ω (the entire space). Then there is a super-replication At so that A0 = A.
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The latter result will be important even when dealing with prediction sets, as we shall see in

Section 5.

Technical Conditions. The assumptions required for Theorem 4.1 and Corollary 4.2 are

as follows. The system: (Ft) is right continuous; F0 is the smallest σ-field containing N ; the S
(i)
t

are P − a.s. continuous and adapted; the short rate process rt is adapted, and integrable P − a.s.;

every P ∈ P has an equivalent martingale measure, that is to say that there is a P ∗ ∈ P∗ that is

equivalent to P . Define the following conditions. (E1): “if X is a bounded random variable and

there is a P ∗ ∈ P∗ so that E∗(X) > 0, then there is a P e ∈ Pe so that Ee(X) > 0”. (E2): “there

is a real number K so that {V ∗
T ≥ −K}c ǫ N”.

Theorem 4.1 now holds supposing that (Vt) is an adapted process, and assuming either

• condition (E1) and that the terminal value of the process satisfies:

sup
P ∗ǫP∗

E∗V ∗−
T < ∞; or

• condition (E2); or

• that (Vt) is continuous.

Corollary 4.2 holds under the same system assumptions, and provided either (E1) and

supP ∗ǫP∗ E∗|η∗| < ∞, or provided η∗ ≥ −K P − a.s. for some K.

Note that under condition (E2), Theorem 4.1 is a corollary to Theorem 2.1 (p. 461) of

Kramkov (1996). This is because P∗ includes the union of the equivalent martingale measures of

the elements in P . For reasons of symmetry, however, we have also sought to study the case where

η∗ is not bounded below, whence the condition (E1). The need for symmetry arises from the desire

to also study bid prices, cf. (2.6). For example, neither a short call not a short put are bounded

below. See Section 4.2.

A requirement in the above results that does need some comment is the one involving extremal

probabilities. Condition (E1) is actually quite weak, as it is satisfied when P∗ is the convex hull of

its extremal points. Sufficient conditions for a result of this type are given in Theorems 15.2, 15.3

and 15.12 (p. 496-498) in Jacod (1979). For example, the first of these results gives the following

as a special case (see Section 6). This will cover our examples.
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Proposition 4.3. Assume the conditions of Theorem 4.1. Suppose that rt is bounded below

by a nonrandom constant (greater that −∞). Suppose that (Ft) is the smallest right continuous

filtration for which (βt, S
(1)
t , ..., S

(p)
t ) is adapted and so that N ⊆ F0. Let C ∈ FT . Suppose that

P∗ equals the set of all probabilities P ∗ so that (S
(1)∗
t ), ..., (S

(p)∗
t ) are P ∗-martingales, and so that

P ∗(C) = 1. Then Condition (E1) is satisfied.

Example . To see how the above works, consider systems with only one stock (p = 1). We

let (βt, St) generate (Ft). A set C ∈ FT will describe our restrictions. For example C can be the

set given by (2.2) or (2.3). The fact that σt is only defined given a probability distribution is not

a difficulty here: we consider P s so that the set C has probability 1 (where quantities like σt are

defined under P ).

One can also work with other types of restrictions. For example, C can be the set of proba-

bilities so that (3.9) is satisfied, and also Π− ≤ [r, σ]T ≤ Π+, where the covariation “[, ]” is defined

in (3.16) in Section 3.4. Only the imagination is the limit here.

Hence, P is the set of all probability distributions P so that S0 = s0 (the actual value),

dSt = µtStdt + σtStdWt, (4.2)

with rt integrable P − a.s., and bounded below by a nonrandom constant, so that P(C) = 1, and

so that

exp

{
−

∫ t

0
λudWu − 1

2

∫ t

0
λ2

udu

}
is a P -martingale, (4.3)

where λu = (µu − ru)/σu. The condition (4.3) is what one needs for Girsanov’s Theorem (see, for

example, Karatzas and Shreve (1991), Theorem 3.5.1) to hold, which is what assures the required

existence of equivalent martingale measure. Hence, in view of Proposition 4.3, Condition (E1) is

taken care of.

To gain more flexibility, one can let (Ft) be generated by more than one stock, and just let

these stocks remain “anonymous”. One can then still use condition (E1). Alternatively, if the

payoff is bounded below, one can use condition (E2).
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4.2. Defining self-financing strategies. In essence, Ht being self-financing means that we

can represent H∗
t by

H∗
t = H∗

0 +

p∑

i=1

∫ t

0
θ(i)
s dS(i)∗

s . (4.4)

This is in view of numeraire invariance (see, e.g., Section 6.B of Duffie (1996)).

Fix P ∈ P , and recall that the S
(i)∗
t are continuous. We shall take the stochastic integral to

be defined when θ
(1)
t , . . . , θ

(p)
t is an element in L2

loc(P ), which is the set of p-dimensional predictable

processes so that
∫ t
0 θ

(i)2
u d[S(i)∗ , S(i)∗ ]u is locally integrable P -a.s. The stochastic integral (4.4) is

then defined by the process in Theorems I.4.31 and I.4.40 (p. 46–48) in Jacod and Shiryaev (1987).

A restriction is needed to be able to rule out doubling strategies. The two most popular ways

of doing that are to insist either that H∗
t be in an L2-space, or that it be bounded below (Harrison

and Kreps (1979), Delbaen and Schachermayer (1995), Dybvig and Huang (1988), Karatzas (1996);

see also Duffie (1996), Section 6.C). We shall here go with a criterion that encompasses both.

Definition. A process Ht, 0 ≤ t ≤ T , is self-financing with respect to S
(1)
t , . . . , S

(p)
t if H∗

t

satisfies (4.4), and if {H∗−
λ , 0 ≤ λ ≤ T, λ stopping time} is uniformly integrable under all P ∗ ∈ P∗

that are equivalent to P .

The reason for seeking to avoid the requirement that H∗
t be bounded below is that, to the

extent possible, the same theory should apply equally to bid and ask prices. Since the bid price is

normally given by (2.6), securities that are unbounded below will be a common phenomenon. For

example, B((S − K)+) = −A(−(S − K)+), and −(S − K)+ is unbounded below.

It should be emphasized that our definition does, indeed, preclude doubling type strategies.

The following is a direct consequence of optional stopping and Fatou’s Lemma.

Proposition 4.4. Let P ∈ P , and suppose that there is at least one P ∗ ∈ P∗ that is

equivalent to P . Suppose that H∗
t is self financing in the sense given above. Then, if there are

stopping times λ and µ, 0 ≤ λ ≤ µ ≤ T , so that H∗
µ ≥ H∗

λ, P -a.s., then H∗
µ = H∗

λ, P -a.s.

Note that Proposition 4.4 is, in a sense, an equivalence. If the conclusion holds for all H∗
t , it

must in particular hold for those that Delbaen and Schachermayer (1995) term admissible. Hence,

by Theorem 1.4 (p. 929) of their work, P ∗ exists.
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4.3. Proofs for Section 4.1.

Proof of Theorem 4.1. The “only if” part of the result is obvious, so it remains to show the

“if” part.

(a) Structure of the Doob-Meyer decomposition of (V ∗
t ). Fix P ∗ ∈ P∗. Let

V ∗
t = H∗

t + D∗
t , D0 = 0 (4.5)

be the Doob-Meyer decomposition of V ∗
t under this distribution. The decomposition is valid by,

for example, Theorem 8.22 (p. 83) in Elliot (1982). Then {H∗−
λ , 0 ≤ λ ≤ T, λ stopping time} is

uniformly integrable under P ∗. This is because H∗−
t ≤ V ∗−

t ≤ E∗(|η∗| | F̄t), the latter inequality

because V ∗−
t = (−V ∗

t )+, which is a submartingale since V ∗
t is a supermartingale. Hence uniform

integrability follows by, say, Theorem I.1.42(b) (p. 11) of Jacod and Shiryaev (1987).

(b) Under condition (E1), (Vt) can be written V ∗
t = V ∗c

t + V ∗d
t , where (V ∗c

t ) is a continuous

supermartingale for all P ∗ ∈ P∗, and (V ∗d
t ) is a nonincreasing process. Consider the set C of ω ∈ Ω

so that ∆V ∗
t ≤ 0 for all t, and so that V ∗d

t =
∑

s≤t ∆V ∗
s is well defined. We want to show that

the complement Cc ∈ N . To this end, invoke Condition (E1), which means that we only have to

prove that P e(C) = 1 for all P e ∈ Pe.

Fix, therefore, P e ∈ Pe, and let H∗
t and D∗

t be given by the Doob-Meyer decomposition (4.5)

under this distribution. By Proposition 11.14 (p 345) in Jacod (1979), P e is extremal in the set

M({S(1)∗, ..., S(p)∗}) (in Jacod’s notation), and so it follows from Theorem 11.2 (p. 338) in the

same work, that (H∗
t ) can be represented as a stochastic integral over the (S

(i)∗
t )’s, whence (H∗

t )

is continuous. P e(C) = 1 follows.

To see that (V ∗c
t ) is a supermartingale for any given P ∗ ∈ P∗, note that Condition (E1)

again means that we only have to prove this for all P e ∈ Pe. The latter, however, follows from the

decomposition in the previous paragraph. (b) follows.

(c) (V ∗
t ) is a super-replication of η. Under condition (E2), the result follows directly from

Theorem 2.1 (p. 461) of Kramkov (1996). Under the other conditions stated, by (b) above, one

can take (V ∗
t ) to be continuous without losing generality. Hence, by local boundedness, the result

also in this case follows from the cited theorem of Kramkov’s.
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Proof of Corollary 4.2. Let (V
(n)
t ) be a super-replication satisfying V

(n)
0 ≤ A + 1/n. Set

Vt = infn V
(n)
t . (Vt) is a supermartingale for all P ∗ ∈ P∗. By Proposition 1.3.14 (p. 16) in Karatzas

and Shreve (1991), (V ∗
t+) (taken as a limit through rationals) exists and is a càdlàg supermartingale

except on a set in N . Hence (V ∗
t+) is a super-replication of η, with initial value no greater than A.

The result follows from Theorem 4.1.

Proof of Proposition 4.3. Suppose that rt ≥ −c for some c < ∞. We use Theorem (15.2c) (p.

496) in Jacod (1979). This theorem requires the notation Ss1(X), which in is the set of probabilities

under which the process Xt is indistinguishable from a submartingale so that E sup0≤s≤t |Xs| < ∞
for all t (in our case, t is bounded, so things simplify). (cf. p. 353 and 356 of Jacod (1979).

Jacod’s result (15.2c) studies, among other things, the set (in Jacod’s notation) S =
⋂

XǫX Ss1(X),

and under conditions which are satisfied if we take X to consist of our processes

S
(1)∗
t , ..., S

(p)∗
t ,−S

(1)∗
t , ...,−S

(p)∗
t , βte

ct, Yt. Here, Yt = 1 for t < T , and IC for t = T . (If necessary,

βte
ct can be localized to be bounded, which makes things messier but yields the same result). In

other words, S is the set of probability distributions so that the S
(1)∗
t , ..., S

(p)∗
t are martingales, rt

is bounded below by c, and the probability of C is one.

Theorem 15.2(c) now asserts a representation of all the elements in the set S in terms of its

extremal points. In particular, any set that has probability zero for the extremal elements of S

also has probability zero for all other elements of S.

However, S = M̃({S(1)∗, ..., S(p)∗}) (again in Jacod’s notation, see p. 345 of that work) –

this is the set of extremal probabilities among those making S(1)∗, ..., S(p)∗ a martingale. Hence,

our Condition (E1) is proved.
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5. Prediction sets: General Theory.

5.1. The Prediction Set Theorem. In the preceding section, we did not take a position on

the set of possible probabilities. As mentioned at the beginning of Section 3.3, one can let this set

be exceedingly large. Here is one stab at this, in the form of the set Q.

Assumptions (A). (System assumptions). Our probability space is the set Ω = C[0, T ]p+1,

and we let (βt, S
(1)
t , ..., S

(p)
t ) be the coordinate process, B is the Borel σ-field, and (Bt) is the

corresponding Borel filtration. We let Q∗ be the set of all distributions P ∗ on B so that

(i) (log βt) is absolutely continuous P ∗-a.s., with derivative rt bounded (above and below) by a

non-random constant, P ∗-a.s.;

(ii) the S
(i)∗
t = β−1

t S
(i)
t are martingales under P ∗;

(iii) [log S(i)∗, log S(i)∗]t is absolutely continuous P ∗-a.s. for all i, with derivative (above and below)

by a non-random constant, P ∗-a.s. As before, “[,]” is the quadratic variation of the process, see

our definition in (3.16) in Section 3.4;

(iv) β0 = 1 and S
(i)
0 = s

(i)
0 for all i.

We let (Ft) be the smallest right continuous filtration containing (Bt+) and all sets in N , given by

N = {F ⊆ Ω : ∀P ∗ ∈ Q∗ ∃EǫB : F ⊆ E and P ∗(E) = 0}. (5.1)

and we let the information at time t be given by Ft. Finally, we let Q be all distributions on

FT that are equivalent (mutually absolutely continuous) to a distribution in Q∗. If we need to

emphasize the dependence of Q on s0 = (s
(1)
0 , ..., s

(p)
0 ), we write Qs0.

Remark . An important fact is that Ft is analytic for all t, by Theorem III.10 (p. 42) in

Dellacherie and Meyer (1978). Also, the filtration (Ft) is right continuous by construction. F0 is a

non-informative (trivial) σ-field. The relationship of F0 to information from the past (before time

zero) is established in Section 5.3.

The reason for considering this set Q as our world of possible probability distributions is the

following. Stocks and other financial instruments are commonly assumed to follow processes of the

form (2.1) or a multidimensional equivalent. The set Q now corresponds to all probability laws
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on this form, subject only to certain integrability requirements (for details, see, for example, the

version of Girsanov’s Theorem given in Karatzas and Shreve (1991), Theorem 3.5.1). Also, if these

requirements fail, the S’s do not have an equivalent martingale measure, and can therefore not

normally model a traded security (see Delbaen and Schachermayer (1995) for precise statements).

In other words, roughly speaking, the set Q covers all distributions of traded securities that have

a form (2.1).

Typical forms of the prediction set C would be those discussed in Section 3. If there are several

securities S
(i)
t , one can also set up prediction sets for the quadratic variations and covariations

(volatilities and cross-volatilities, in other words). It should be noted that one has to exercise some

care in how to formally define the set C corresponding to (2.1) – see the development in Sections

5.2-5.3 below.

The price A0 is now as follows. A subset of Q∗ is given by

P∗ = {P ∗ ∈ Q∗ : P ∗(C) = 1}. (5.2)

The price is then, from Theorem 5.1 below,

A0 = sup{E∗(η∗) : P ∗ǫP∗}, (5.3)

where E∗ is the expectation with respect to P ∗, and

η∗ = exp{−
∫ T

0
rudu}η. (5.4)

It should be emphasized that though (5.2) only involves probabilities that give measure 1 to the

set C, this is only a computational device. The prediction set C can have any real prediction

probability 1 − α, cf. statement (5.7) below. The point of Theorem 5.1 is to reduce the problem

from 1 − α to 1, and hence to the discussion in Sections 3 and 4.

We assume the following structure for C.

Definition. A set C in FT is Q∗-closed if, whenever P ∗
n is a sequence in Q∗ for which P ∗

n

converges weakly to P ∗ and so that P ∗
n(C) → 1, then P ∗(C) = 1. Weak convergence is here relative

to the usual supremum norm on Cp+1 = Cp+1[0, T ], the coordinate space for (β·, S
(1)
· , ..., S

(p)
· ).
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Obviously, C is Q∗-closed if it is closed in the supremum norm, but the opposite need not

be true. See Section 5.2 below.

The precise result is as follows. Note that −K is a credit constraint; see below in this section.

Theorem 5.1. (Prediction Region Theorem). Let Assumptions (A) hold. Let C be a Q∗-

closed set, C ∈ FT . Suppose that P∗ is non-empty. Let

η = θ(β·, S
(1)
· , ..., S

(p)
· ), (5.5)

where θ is continuous on Ω (with respect to the supremum norm) and bounded below by −KβT ,

where K is a nonrandom constant (K ≥ 0). We suppose that

sup
P ∗∈P∗

E∗|η∗| < ∞ (5.6)

Then there is a super-replication (At) of η on C, valid for all Q ∈ Q, whose starting value is A0

given by (5.3). Furthermore, At ≥ −Kβt for all t, Q-a.s.

In particular,

Q(AT ≥ η) ≥ Q(C) for all Q ∈ Q , (5.7)

and this is, roughly, how a 1 − α prediction set can be converted into a trading strategy that is

valid with at least the same probability. This works both in the frequentist and Bayesian cases, as

described in Section 5.2. Note that both in Theorem 5.1 and in (5.7), Q refers to all probabilities

in Q, and not only the “risk neutral” ones in Q∗.

The form of A0 and the super-replicating strategy is discussed above in Section 3 and below

in Sections 6 and 7 for European options.

The condition that θ be bounded below can be seen as a restriction on credit. Since K is

arbitrary, this is not severe. Note that the credit limit is more naturally stated on the discounted

scale: η∗ ≥ −K, and A∗
t ≥ K. See also Section 4.2, where a softer bound is used.

The finiteness of credit has another implication. The portfolio (At), because it is bounded

below, also solves another problem. Let IC and I
C̃

be the indicator functions for C and its

complement. A corollary to the statement in Theorem 5.1 is that (At) super-replicates the random
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variable η′ = ηIC − KβT I
C̃
. And here we refer to the more classical definition: the super-

replication is Q− a.s., on the entire probability space. This is for free: A0 has not changed.

It follows that A0 can be expressed as supP ∗∈Q∗ E∗((η′)∗), in obvious notation. Of course,

this is a curiosity, since this expression depends on K while A0 does not.

5.2. Prediction sets: A problem of definition. A main example of this theory is where one

has prediction sets for the cumulative interest − log βT =
∫ T
0 rudu and for quadratic variations

[log S(i)∗, log S(j)∗]T . For the cumulative interest, the application is straightforward. For example,

{R− ≤ − log βT ≤ R+} is a well defined and closed set. For the quadratic (co-)variations, however,

one runs into the problem that these are only defined relative to the probability distribution under

which they live. In other words, if F is a region in C[0, T ]q, and

CQ = {(− log βt, [log S(i)∗, log S(j)∗]t, i ≤ j)0≤t≤T ∈ F}, (5.8)

then, as the notation suggests, CQ will depend on Q ∈ Q. This is not permitted by Theorem 5.1.

The trading strategy cannot be allowed to depend on an unknown Q ∈ Q, and so neither can the

set C. To resolve this problem, and to make the theory more directly operational, the following

Proposition 5.2 shows that CQ has a modification that is independent of Q, and that satisfies the

conditions of Theorem 5.1.

Proposition 5.2. Let F be a set in C[0, T ]q, where q = 1
2p(p−1)+1. Let F be closed with

respect to the supremum norm on C[0, T ]q. Let CQ be given by (5.8). Then there is a Q∗-closed

set C in FT so that, for all Q ∈ Q,

Q (C∆CQ) = 0, (5.9)

where ∆ refers to the symmetric difference between sets.

Only the existence of C matters, not its precise form. The reason for this is that relation

(5.9) implies that CP ∗ and CQ can replace C in (5.2) and (5.7), respectively. For the two prediction

sets on which our discussion is centered, (2.3) uses

F = {(xt)0≤t≤T ∈ C[0, T ], nondecreasing : x0 = 0 and Ξ− ≤ xT ≤ Ξ+},
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whereas (3.5) relies on

F = {(xt)0≤t≤T ∈ C[0, T ], nondecreasing : x0 = 0 and ∀s, t ∈ [0, T ], s ≤ t : σ2
−(t−s) ≤ xt−xs ≤ σ2

+(t−s)}.

One can go all the way and jettison the set C altogether. Combining Theorem 5.1 and

Proposition 5.2 immediately yields such a result:

Theorem 5.3. (Prediction Region Theorem, without Prediction Region). Let Assumptions

(A) hold. Let F be a set in C[0, T ]q, where q = 1
2p(p−1)+1. Suppose that F is closed with respect

to the supremum norm on C[0, T ]q. Let CQ be given by (5.8), for every Q ∈ Q. Replace C by

CP ∗ in equation (5.2), and suppose that P∗ is non-empty. Impose the same conditions on θ(·) and

η = θ(β·, S
(1)
· , ..., S

(p)
· ) as in Theorem 5.1. Then there exists a self financing portfolio (At), valid

for all Q ∈ Q, whose starting value is A0 given by (5.3), and which satisfies (5.7). Furthermore,

At ≥ −Kβt for all t, Q-a.s.

It is somewhat unsatisfying that there is no prediction region anymore, but, of course, C is

there, underlying Theorem 5.3. The latter result, however, is easier to refer to in practice.

It should be emphasized that it is possible to extend the original space to include a volatility

coordinate. Hence, if prediction sets are given on forms like (2.2) or (2.3), one can take the set to

be given independently of probability. In fact, this is how Proposition 5.2 is proved.

In the case of European options, this may provide a “probability free” derivation of Theorem

5.1. Under the assumption that the volatility is defined independently of probability distribution,

Föllmer (1979) and Bick and Willinger (1994) provide a non probabilistic derivation of Itô’s formula,

and this can be used to show Theorem 5.1 in the European case. Note, however, that this non

probabilistic approach would have a harder time with exotic options, since there is (at this time)

no corresponding martingale representation theorem, either for the known probability case (as in

Jacod (1979)) or in the unknown probability case (as in Kramkov (1996) and Mykland (2000)).

Also, the probability free approach exhibits a dependence on subsequences (see the discussion

starting in the last paragraph on p. 350 of Bick and Willinger (1994)).
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5.3. Prediction regions from historical data: A decoupled procedure. Until now, we have

behaved as if the prediction sets or prediction limits were non random, fixed, and not based on

data. This, of course, would not be the case with statistically obtained sets.

Consider the the situation where one has a method giving rise to a prediction set Ĉ. For

example, if C(Ξ−,Ξ+) is the set from (2.3), then, a prediction set might look like Ĉ = C(Ξ̂−, Ξ̂+),

where Ξ̂− and Ξ̂+ are quantities that are determined (and observable) at time 0.

At this point, one runs into a certain number of difficulties. First of all, C, as given by (2.2) or

(2.3), is not well defined, but this is solved through Proposition 5.2 and Theorem 5.3. In addition,

there is a question of whether the prediction set(s), A0, and the process (At) are measurable when

also functions of data available at time zero. We return to this issue at the end of this section.

From an applied perspective, however, there is a considerably more crucial matter that comes

up. It is the question of connecting the model for statistical inference with the model for trading.

What we advocate is the following two stage procedure: (1) find a prediction set C by

statistical or other methods, and then (2) trade conservatively using the portfolio that has value

At. When statistics is used, there are two probability models involved, one for each stage.

We have so far been explicit about the model for Stage (2). This is the nonparametric family

Q. For the purpose of inference – Stage (1) – the statistician may, however, wish to use a different

family of probabilities. It could also be nonparametric, or it could be any number of parametric

models. The choice might depend on the amount and quality of data, and on other information

available.

Suppose that one considers an overall family Θ of probability distributions P . If one collects

data on the time interval [T−, 0], and sets the prediction interval based on these data, the P ∈ Θ

could be probabilities on C[T−, T ]p+1. More generally, we suppose that the P ’s are distributions

on S × C[0, T ], where S is a complete and separable metric space. This permits more general

information to go into the setting of the prediction interval. We let G0 be the Borel σ-field on S.

As a matter of notation, we assume that S0 = (S
(1)
0 , ..., S

(p)
0 ) is G0-measurable. Also, we let Pω be

the regular conditional probability on C[0, T ]p+1 given G0. (Pω is well defined; see, for example p.

265 in Ash (1972)). A meaningful passage from inference to trading then requires the following.
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Nesting Condition: For all P ∈ Θ, and for all ω ∈ S, Pω ∈ QS0.

In other words, we do not allow the statistical model Θ to contradict the trading model Q.

The inferential procedure might then consist of a mapping from the data to a random closed

set F̂ . The prediction set is formed using (5.8), yielding

ĈQ = {(− log βt, [log S(i)∗, log S(j)∗]t, i ≤ j)0≤t≤T ∈ F̂},

for each Q ∈ QS0. Then proceed via Proposition 5.2 and Theorem 5.1, or use Theorem 5.3 for a

shortcut. In either case, obtain a conservative ask price and a trading strategy. Call these Â0 and

Ât. For the moment, suspend disbelief about measurability.

To return to the definition of prediction set, it is now advantageous to think of this set as

being F̂ . This is because there are more than one CQ, and because C is only defined up to measure

zero. The definition of a 1 − α prediction set can then be taken as a requirement that

P ({(− log βt, [log S(i)∗, log S(j)∗]t, i ≤ j)0≤t≤T ∈ F̂} | H) ≥ 1 − α. (5.10)

In the frequentist setting, (5.10) must hold for all P ∈ Θ. H is a sub-σ-field of G0, and in the

purely unconditional case, it is trivial. By (5.7), P (ÂT ≥ η | H) ≥ 1 − α, again for all P ∈ Θ.

In the Bayesian setting, H = G0, and P ( · |H) is a mixture of Pω’s with respect to the

posterior distribution π̂ at time zero. As mentioned after equation (5.7), the mixture would again

be in QS0, subject to some regularity. Again, (5.7) would yield that P (ÂT ≥ η | H) ≥ 1 − α, a.s.

It this discussion, we do not confront the questions that are raised by setting prediction

sets by asymptotic methods. Such approximation is almost inevitable in the frequentist setting.

For important contributions to the construction of prediction sets, see Barndorff-Nielsen and Cox

(1996) and Smith (1999), and the references therein.

It may seem odd to argue for an approach that uses different models for inference and trading,

even if the first is nested in the other. We call this the decoupled prediction approach. A main

reason for doing this is that we have taken inspiration from the cases studied in Sections 3, 6 and

7. One can consider alternatives, however, cf. Section 8 below.
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To round off this discussion, we return to the question of measurability. There are (at least)

three functions of the data where measurability is in question: (i) the prediction set F̂ , (ii) the

prediction probabilities (5.10) and (iii) the starting value (Â0).

We here only consider (ii) and (iii), since the first question is heavily dependent on Θ and

S. In fact, we shall take the measurability of F̂ for granted.

Let FFF be the collection of closed subsets F of C[0, T ]q. We can now consider the following

two maps:

FFF × S → R : (F,ω) → Pω({(− log βt, [log S(i)∗, log S(j)∗]t, i ≤ j)0≤t≤T ∈ F ) (5.11)

and

FFF × R
p+1 → R : (F, x) → A0 = AF

0 (x). (5.12).

Oh, yes, and we need a σ-field on FFF . How can we otherwise do measurability? Make the

detour via convergence; Fn → F if lim supFn = lim inf Fn = F , which is the same as saying that

the indicator functions IFn converge to IF point-wise. On FFF , this convergence is metrizable (see

the Proof of Proposition 5.4 for one such metric). Hence FFF has a Borel σ-field. This is our σ-field.

Proposition 5.4. Let Assumptions (A) hold. Impose the same conditions on θ(·) and

η = θ(β·, S
(1)
· , ..., S

(p)
· ) as in Theorem 5.1. Then the maps (5.11) and (5.12) are measurable.

If we now assume that the map S → FFF , ω → F̂ , is measurable, then standard considerations

yield the measurability of S → R, ω → Pω({(− log βt, [log S(i)∗, log S(j)∗]t, i ≤ j)0≤t≤T ∈ F̂ ) and

S ×Rp+1 → R, (ω, x) → Â0 = AF̂
0 . Hence problem (iii) is solved, and the resolution of (ii) follows

since (5.11) equals the expected value of Pω({(− log βt, [log S(i)∗, log S(j)∗]t, i ≤ j)0≤t≤T ∈ F̂ ), given

H, both in the Bayesian and frequentist cases.
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5.4. Proofs for Section 5.

Proof of Theorem 5.1. Assume the conditions of Theorem 5.1. Let m ≥ K, and define θ(m)

by

θ(m)(β·, S
(1)
· , ..., S

(p)
· ) = θ(β·, S

(1)
· , ..., S

(p)
· )IC(β·, S

(1)
· , ..., S

(p)
· ) − mβT I

C̃
(β·, S

(1)
· , ..., S

(p)
· ),

where C̃ is the complement of C.

On the other hand, for given probability P ∗ ∈ Q∗, define σij
u by

[log S(i)∗, log S(j)∗]t =

∫ t

0
σij

u du.

Also, for c as a positive integer, or c = +∞, set

Q∗
c = {P ∗ ∈ Q∗ : sup

t
|rt| +

∑

i

σii
t ≤ c} .

Let P∗
c be the set of all distributions in Q∗

c that vanish outside C. Under Assumptions (A),

there is a c0 < +∞ so that P∗
c is nonempty for c ≥ c0. Also, consider the set Q∗

c(t) of distributions

on C[t, T ]p+1 satisfying the same requirements as those above, but instead of (iv) (in Assumption

A) that, for all u ∈ [0, t], βu = 1 and S
(i)
u = 1 for all i.

(1) First, let c0 ≤ c < +∞. Below, we shall make substantial use of the fact that the

space Q∗
c(t) is compact in the weak topology. To see this, invoke Propositons VI.3.35, VI.3.36 and

Theorem VI.4.13 (pp. 318 and 322) of Jacod and Shiryaev (1987)).

Consider the functional C[0, t]p+1 ×Q∗
c(t) → R given by

θ
(m)
t (b·, s

(1)
· , ..., s

(p)
· , P ∗) = E∗btβ

−1
T θ(m)(b·β·, s

(1)
· S

(1)
· , ..., s

(p)
· S

(p)
· ).

Also, set, for m ≥ K,

θ
(m)
t = (b·, s

(1)
· , ..., s

(p)
· ) = sup

P ∗∈Q∗

c(t)
θ
(m)
t (b·, s

(1)
· , ..., s

(p)
· , P ∗).

The supremum is Ft-measurable since this σ-field is analytic (see Remark 5.1), and since the space

Q∗
c(t) is compact in the weak topology. The result then follows from Theorems III.9 and III.13

(pp. 42-43) in Dellacherie and Meyer (1978); see also the treatment in Pollard (1984), pp. 196-197.
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Since, again, the space Q∗
c(t) is compact in the weak topology, it follows that the supremum

is a bounded. By convergence, A
(m)∗
t = β−1

t θ
(m)
t (β·, S

(1)
· , ..., S

(p)
· ) is an (Ft)-supermartingale for all

P ∗ ∈ Q∗
c . Also, in consequence, (A

(m)∗
t ) can be taken to be càdlàg, since (Ft) is right continuous.

This is by the construction in Proposition I.3.14 (p. 16-17) in Karatzas and Shreve (1991). Set

A
(m)
t = βtA

(m)∗
t (the càdlàg version).

(2) Consider the special case where η = −KβT , and call Ã
(m)∗
t the resulting supermartingale.

Note that Ã
(m)∗
t ≤ −K on the entire space, and set

τ = inf{t : Ã
(m)∗
t < −K}.

τ is an Ft stopping time by Example I.2.5 (p. 6) of Karatzas and Shreve (1991).

By definition, A
(m)∗
t ≥ Ã

(m∗)
t everywhere. Since both are supermartingales, we can consider

a modified version of A
(m)∗
t so that it takes new value

A
(m)
t = lim

u↑τ
A(m)

u for τ ≤ t ≤ T

. In view of Proposition I.3.14 (again) in Karatzas and Shreve (1991), this does not interfere with

the supermartingale property of A
(m)∗
t .

Now observe two particularly pertinent facts: (i) The redefinition of A(m) does not affect the

initial value, since P∗
c is nonempty, and (ii) A

(m)
t = A

(K)
t for all t, since m ≥ K.

(3) On the basis of this, one can conclude that

A
(K)
0 = sup

P ∗∈P∗

c

E∗(η∗), (5.13)

as follows. By the weak compactness of Q∗
c , there is a P ∗

m be such that for given (b0, s
(1)
0 , ..., s

(p)
0 ),

θ
(m)
0 (b·, s

(1)
· , ..., s

(p)
· ) ≤ θ

(m)
0 (b·, s

(1)
· , ..., s

(p)
· , P ∗

m) + m−1.

Also, there is a subsequence P ∗
mk

that converges weakly to some P ∗.

Recall that m is fixed, and is greater than K. It is then true that, for mk ≥ m, and with C̃

denoting the complement of C,

A
(K)∗
0 = A

(m)∗
0 = θ

(m)
0 (b0, s

(1)
0 , ..., s

(p)
0 )
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≤ θ
(mk)
0 (b0, s

(1)
0 , ..., s

(p)
0 , P ∗

mk
) + m−1

k

≤ E∗
mk

β−1
T θ(β·, S

(1)
· , ..., S

(p)
· ) + P ∗

mk
(C̃)(K − mk) + m−1

k

≤ E∗
mk

β−1
T θ(β·, S

(1)
· , ..., S

(p)
· ) + P ∗

mk
(C̃)(K − m) + m−1

k

≤ E∗β−1
T θ(β·, S

(1)
· , ..., S

(p)
· ) + lim sup m→+∞P ∗

mk
(C̃)(K − m) + o(1) (5.14)

as k → ∞. The first term on the right hand side of (5.14) is bounded by the weak compactness of

Q∗
c . The left hand side is a fixed, finite, number. Hence lim sup P ∗

mk
(C̃) = 0. By the Q∗-closedness

of C, it follows that P ∗(C) = 1.

Hence, (5.14) yields that the right hand side in (5.13) is an upper bound for A
(K)∗
0 = A

(m)∗
0 .

Since this is also trivially a lower bound, (5.13) follows.

(4) Now make A
(m)
t dependent on c, by writing A

(m,c)
t . For all Q∗ ∈ Q∗, the A

(m,c)∗
t are all

Q∗-supermartingales, bounded below by −m. A
(m,c)∗
t is nondecreasing in c. Let A

(m,∞)
t denote the

limit as c → +∞. By Fatou’s Lemma, for Q∗ ∈ Q∗, and for s ≤ t,

E∗(A
(m,∞)∗
t |Fs) ≤ lim inf

c→+∞
E∗(A

(m,c)∗
t |Fs) = lim inf

c→+∞
A(m,c)∗

s = A(m,∞)∗
s .

Hence A
(m,∞)∗
t is a supermartingale for all m ≥ K. Also, by construction, A

(m,∞)∗
T ≥ η∗. By the

results of Kramkov (1996) or Mykland (2000), A
(m,∞)
t+ is, therefore, a super-replication of η.

For the case of t = 0, (5.13) yields that

A
(m,∞)
0 = sup

P ∗∈P∗

E∗(η∗), (5.15)

where the non obvious inequality (≥) follows from the monotone convergence, and assumption

(5.7). – Since one can choose m = K, Theorem 5.1 is proved.

Proof of Proposition 5.2. Extend the space Cp+1 to Cp+q. Consider the set Q̃ of probabilities

Q on Cp+q for which the projection onto Cp+1 is in Q∗ and so that ([log S(i)∗, log S(j)∗]t, i ≤ j) are in-

distinguishable from (x
(k)
t , k = p+2, ..., p+q). Now consider the set F ′ = {ω : (− log β, x(p+2), ..., x(p+q)) ∈
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F}. Note that F ′ is in the completion of Ft ⊗ {C
q−1, Ø} with respect to Q̃. Hence, there is a C

in FT so that P ∗(C∆F ′) = 0 for all P∗ ∈ Q∗. This is our C.

To show that C is Q∗-closed, suppose that a sequence (in Q∗) P ∗
n → P ∗ weakly. Construct

the corresponding measures P̃ ∗
n and P̃ ∗ in Q̃. By corollary VI.6.7 (p. 342) in Jacod and Shiryaev

(1987), P̃ ∗
n → P̃ ∗ weakly. Hence, since F and hence F ′ is closed, if P̃ ∗

n(F ′) → 1, then P̃ ∗(F ′) = 1.

The same property must then also hold for C.

Proof of Proposition 5.4 Let d be the uniform metric on Cq, ı.e., d(x, y) =
∑

i=1,...,q supt∈[0,T ] |xi
t−

yi
t|. Let {zn} be a countable dense set in Cq with respect to this metric. It is then easy to see

that

ρ(F,G) =
∑

n∈N

1
2n (|d(zn, F ) − d(zn, G)| ∧ 1)

is a metric on FFF whose associated convergence is the pointwise one.

We now consider the functions fm(F, x) = (1 − md(x, F ))+. These are continuous as maps

FFF ×C[0, T ]q → R. From this, the indicator function IF (x) = infm∈N f(x) is upper semicontinuous,

and hence measurable. The result for (5.11) then follows from Exercise 1.5.5 (p.43) in Strook and

Varadhan (1979). The development for (5.12) is similar.
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6. Prediction sets: The effect of interest rates, and general formulae for European

options.

6.1 Interest rates: market structure, and types of prediction sets. When evaluating options

on equity, interest rates are normally seen by practitioners as a second order concern. In the

following, however, we shall see how to incorporate such uncertainty if one so wishes. It should be

emphasized that the following does not discuss interest rate derivatives as such. We suppose that

intervals are set on integral form, in the style of (2.3). One could then consider the incorporation

of interest rate uncertainty in several ways.

One possibility would be to use a separate interval for the interest rate:

R− ≤
∫ T

0
rudu ≤ R+. (6.1)

In combination with (2.3), this gives A = B(S0, R
+,Ξ+), for convex increasing payoff f(ST ) cf.

Section 3.2.

For more general European payoffs f , set

h(s) = sup
R−≤R≤R+

exp{−R}f(exp{R}s). (6.2)

The bound A then becomes the bound for hedging payoff h(ST ) under interval (2.3). This is seen

by the same methods as those used to prove Theorem 6.2 below. Note that when f is convex or

concave, then so is h, and so in this case A = B(S0, 0,Ξ±;h). Here B is as in (3.1), but based on

h instead of f . The ± on Ξ depends on whether f is convex (+) or concave (−). A more general

formula is given by (6.13) in Section 6.3.

This value of A0, however, comes with an important qualification. It is the value one gets

by only hedging in the stock S and the money market bond β. But usually one would also have

access to longer term bonds. In this case, the value of A would be flawed since it does not respect

put-call parity (see p. 167 in Hull (1997). To remedy the situation, we now also introduce the zero

coupon treasury bond Λt. This bond matures with the value one dollar at the time T which is also

the expiration date of the European option.
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If such a zero coupon bond exists, and if one decides to trade in it as part of the super-

replicating strategy, the price A0 will be different. We emphasize that there are two if’s here. For

example, Λ could exist, but have such high transaction cost that one would not want to use it.

Or maybe one would encounter legal or practical constraints on its use. - These problems would

normally not occur for zero coupon bonds, but can easily be associated with other candidates for

“underlying securities”. Market traded call and put options, for example, can often exist while

being too expensive to use for dynamic hedging. There may also be substantial room for judgment.

We emphasize, therefore, that the price A0 depends not only on one’s prediction region, but

also on the market structure. Both in terms of what exists and in terms of what one chooses to

trade in. To reflect the ambiguity of the situation, we shall in the following describe Λ as available

if it is traded and if it is practicable to hedge in it.

If we assume that Λ is, indeed, available, then as one would expect from Section 3, different

prediction regions give different values of A0. If one combines (2.3) and (6.1), the form of A0,

is somewhat unpleasant. We give the details in Section 6.4. Also, one suffers from the problem

of setting a two dimensional prediction region, which will require prediction probabilities in each

dimension that will be higher than 1 − α.

A better approach is the following. This elegant way of dealing with uncertain interest was

first encountered by this author in the work of El Karoui, Jeanblanc-Picqué and Shreve (1998).

Consider the stock price discounted (or rather, blown up) by the zero coupon bond:

S
(∗)
t = St/Λt. (6.3)

In other words, S
(∗)
t is the price of the forward contract that delivers ST at time T . Suppose that

the process S(∗) has volatility σ∗
t , and that we now have prediction bounds similar to (2.3), in the

form

Ξ∗− ≤
∫ T

0
σ∗2

t dt ≤ Ξ∗+. (6.4)

We shall see in Section 6.3 that the second interval gives rise to a nice form for the conservative

price A0. For convex European options such as puts and calls, A0 = B(S0,− log Λ0,Ξ
∗+). The

main gain from using this approach, however, is that it involves a scalar prediction interval. There

is only one quantity to keep track of. And no multiple comparison type problems.
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The situation for the call option is summarized in Table 3. The value A0 depends on two

issues: is the zero coupon bond available, and which prediction region should one use?

Table 3

Comparative prediction sets: r nonconstant

Convex European options, including calls

Λt available? A0 from (2.3) and (6.1) A0 from (6.4)

no B(S0,Ξ
+, R+) not available

yes see Section 6.4 B(S0,Ξ
∗+,− log Λ0)

B is defined in (3.2)-(3.3) for call options, and more generally in (3.1).

Table 3 follows directly from the development in Section 6.3. The hedge ratio corresponding

to (6.4) is given in (6.12) below.

6.2. The effect of interest rates: the case of the Ornstein-Uhlenbeck model. We here discuss

a particularly simple instance of incorporating interest rate uncertainty into the interval (6.4). In

the following, we suppose that interest rates follow a linear model (introduced in the interest rate

context by Vasicek (1977)),

drt = ar(br − rt)dt + crdVt, (6.5)

where V is a Brownian motion independent of B in (2.1).

The choice of interest rate model highlights the beneficial effects of the “decoupled” prediction

procedure (Section 5.3): this model would be undesirable for hedging purposes as it implies that

any government bond can be hedged in any other government bond, but on the other hand it

may not be so bad for statistical purposes. Incidentally, the other main conceptual criticism of this

model is that rates can go negative. Again, this is something that is less bothersome for a statistical

analysis than for a hedging operation. This issue, as far as interest rates are concerned, may have

become obsolete after the apparent occurrence of negative rates in Japan (see, e.g., “Below zero”

(The Economist, Nov. 14, 1998, p.81)). Similar issues remain, however, if one wishes to use linear

models for volatilities.
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Suppose that the time T to maturity of the discount bond Λ is sufficiently short that there

is no risk adjustment, in other words, Λ0 = E exp{−
∫ T
0 rtdt}. One can then parametrize the

quantities of interest as follows: there are constants ν and γ so that

∫ T

0
rtdt has distribution N(ν, γ2). (6.6)

It follows that

log Λ0 = −ν +
1

2
γ2. (6.7)

In this case, if we suppose that the stock follows (2.1), then

∫ T

0
σ∗2

u du =

∫ T

0
σ2

udu + γ2. (6.8)

Prediction intervals can now be adjusted from (2.3) to (6.4) by incorporating the estimation un-

certainty in γ2. – Nonlinear interest rate models, such as the one from Cox, Ingersoll and Ross

(1985), require, obviously, a more elaborate scheme.

It may seem confusing to declare the Vasicek model (6.5) to be unsuitable in one paragraph,

and then set prediction intervals with it in the next. To first order, this is because the distribution

for the integral may be approximately correct even if the trading implications of the model are not.

Also, a small error in (6.8), when used through a prediction interval, does not have very severe

consequences.

6.3. General European options. We here focus on the single prediction set (6.4). The

situation of constant interest rate (Table 1 in Section 3.3) is a special case of this, where the

prediction set reduces to (2.3).

Theorem 6.1. Under the Assumptions (A), and with prediction set (6.4), if one hedges

liability η = g(ST ) in St and Λt, the quantity A has the form

A0 = sup
τ

ẼΛ0f(
1

Λ0
S̃τ ), (6.9)



44

where the supremum is over all stopping times τ that take values in [Ξ∗−,Ξ∗+], and where P̃ is a

probability distribution on C[0, T ] so that

dS̃t = S̃tdW̃t, with S̃0 = s0, (6.10)

where s0 is the actual observed value of S0.

If one compares this with the results concerning nonconstant interest below in Section 6.4,

the above would seem to be more elegant, and it typically yields lower values for A0. It is also

easier to implement since S̃ is a martingale.

Now consider the case of convex or concave options. The martingale property of S̃ yields

that the A0 in (6.9) has the value

A0 = B(S0,Ξ
∗±,− log Λ0) . (6.11)

As in Section 6.1, ± depends on whether f is convex of concave.

It is shown in Section 6.5 that the delta hedge ratio for convex g is

∂B
∂S (St,Ξ

∗+ −
∫ t

0
σ∗2

u du,− log Λt). (6.12)

In practice, one has to make an adjustment similar to that at the end of Section 3.3.

As a consequence of Theorem 6.1, we can also state the form of the value A when hedging

only in stock and the money market bond. If h is defined as in (6.2), one gets similarly to (6.9)

that

A0 = sup
τ

Ẽh(S̃τ), (6.13)
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6.4. General European options: The case of two intervals and a zero coupon bond. Now

assume that we have a prediction set consisting of the two intervals (2.3) and (6.1). We can now

incorporate the uncertainty due to interest rates as follows. First form the auxiliary function

h(s, λ; f) = sup
R−≤R≤R+

exp{−R}[f(exp{R}s) − λ] + λΛ0 (6.14).

Our result is now that the price for the dynamic hedge equals the price for the best static hedge,

and that it has the form of the price of an American option.

Theorem 6.2. Under the assumptions above, if one hedges in St and Λt, the quantity A

has the form

A0(f) = inf
λ

sup
τ

Ẽh(S̃τ , λ; f) (6.15)

where P̃ is the probability distribution for which

dS̃t = S̃tdW̃t, S̃0 = S0 (6.16)

and τ is any stopping time between Ξ− and Ξ+.

As above, if f is convex or concave, then so is the h in (6.14). In other words, since convex

functions of martingales are submartingales, and concave ones are supermartingales (see, for ex-

ample, Karatzas and Shreve (1991), Proposition I.3.6 (p. 13)), the result in Theorem 6.2 simplifies

in those cases:

f convex: A0 = inf
λ

Ẽh(S̃Ξ+, λ; f), and

f concave: A0 = inf
λ

Ẽh(S̃Ξ−, λ; f), (6.17)

both of which expressions are analytically computable.

We emphasize that what was originally cumulative volatilities (Ξ−, Ξ+) have now become

measures of time when computing (6.15). This is because of the Dambis (1965)/Dubins-Schwartz

(1965) time change, which leads to time being measured on the volatility scale.

Remark 6.1. Note that in Theorem 6.2, the optimization involving R and λ can be summa-

rized by replacing (6.15) with A0(f) = supτ Ẽg(S̃τ ; f), where g(s; f) is the supremum of Eh(s, λ; f)
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over (random variables) R ∈ [R−, R+], subject to E(exp{−R}) = Λ0. R becomes a function of s,

which in the case of convex f will take values R− and R+. This type of development is further

pursued in Section 7 below.

Remark 6.2. Bid prices are formed similarly. In Theorem 6.2,

B0(f) = sup
λ

inf
τ

Ẽh(S̃τ , λ; f).

This is as in equation (2.6).

The expression for A(f) for the call option, f(s) = (s − K)+, is the following. If v0 solves

Φ(d2(S0, v0,Ξ
+)) =

exp(−R−) − Λ0

exp(−R−) − exp(−R+)
,

where Φ is the cumulative normal distribution and in the same notation as in (3.2)–(3.3), then one

can start a super-replicating strategy with the price at time zero given in the following:

v0 ≥ R+ : C(S0, R
+,Ξ+)

R+ > v0 > R− : C(S0, v0,Ξ
+) + K

(
exp(−v0) − exp(−R+)

)
Φ

(
d2(S0, v0,Ξ

+)
)

v0 ≤ R− : C(S0, R
−,Ξ+) + K

(
exp(−R−) − Λ0

)

6.5. Proofs for Section 6.

Proof of Theorem 6.1. The At be a self financing trading strategy in St and Λt that covers

payoff g(ST ). In other words,

dAt = θ
(0)
t dΛt + θ

(1)
t dSt and At = θ

(0)
t Λt + θ

(1)
t St

If S
(∗)
t = Λ−1

t St, and similarly for A
(∗)
t , this is the same as asserting that

dA
(∗)
t = θ

(1)
t dS

(∗)
t .

This is by numeraire invariance and/or Itô’s formula. In other words, for a fixed probability P ,

under suitable regularity conditions, the price of payoff g(ST ) is A0 = Λ0A
(∗)
0 = Λ0E

(∗)A
(∗)
T =
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Λ0E
(∗)g(S

(∗)
T ), where P (∗) is a probability distribution equivalent to P under which S(∗) is a

martingale.

It follows that Theorem 5.1 can be applied as if r = 0 and one wishes to hedge in security

S
(∗)
t . Hence, it follows that

A0 = sup
P ∗∈P∗

Λ0E
(∗)g(S

(∗)
T )

By using the Dambis (1965)/Dubins-Schwarz (1965) time change, the result follows.

Derivation of the hedging strategy (6.12). As discussed in Section 3.2, the function B(S,Ξ, R)

defined in (3.1), satisfies two partial differential equations, viz., 1
2BSSS2 = BΞ and −BR = B−BSS.

It follows that BRR = BR − BSRS and BRS = BSSS.

Now suppose that Ξt is a process with no quadratic variation. We then get the following

from Itô’s Lemma:

dB(St,Ξt,− log Λt) = BSdSt − BR
1

Λt
dΛt

+ BΞ(d < log S∗ >t +dΞt) (6.18)

If one looks at the right hand side of (6.18), the first line is the self financing component in the

trading strategy. One should hold BS(St,Ξt,− log Λt) units of stock, and BR(St,Ξt,− log Λt)/Λt

units of the zero coupon bond Λ. In order for this strategy to not require additional input during

the life of the option, one needs the second line in (6.18) to be nonpositive. In the case of a convex

or concave payoff, one just uses dΞt = −d < log S∗ >t, with Ξ0 as Ξ∗+ or Ξ∗−, as the case may

be.

Proof of Theorem 6.2. By Theorem 5.1,

A0 = sup
P ∗∈P∗

EP ∗ exp{−
∫ T

0
rudu}f(exp{

∫ T

0
rudu}S∗

T ).

For a given P ∗ ∈ P∗, define P (1), also in P∗, by letting v > 1, σnew
t = σvt for vt ≤ T and zero

thereafter until T . whereas we let rnew
t = 0 until T/v, and thereafter let rnew

t = r(vt−T )/(v−1). On

the other hand, define P (2), also in P∗, by letting r
(2)
t = 0 for t < T/v, and r

(2)
t = Rv/T (1 − v),

where R maximizes the right hand side of (6.14) given s = S∗
T and subject to E exp{−R} = Λ0.
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Obviously,

EP∗ exp{−
∫ T

0
rudu}f(exp{

∫ T

0
rudu}S∗

T ) = EP(1) exp{−
∫ T

0
rudu}f(exp{

∫ T

0
rudu}S∗

T )

≤ EP(2) exp{−
∫ T

0
rudu}f(exp{

∫ T

0
rudu}S∗

T )

≤ inf
λ

EP(2)h(S∗
T , λ; f)

by a standard constrained optimization argument.

By using the Dambis (1965)/Dubins-Schwarz (1965) time change (see, e.g., Karatzas and

Shreve (1991), p. 173-179), (6.15)-(6.16) follows.

7. Prediction sets and the interpolation of options. .

7.1. Motivation. A major problem with a methodology that involves intervals for prices

is that these can, in many circumstances, be too wide to be useful. There is scope, however, for

narrowing these intervals by hedging in auxiliary securities, such as market traded derivatives. The

purpose of this section is to show that this can be implemented for European options. A general

framework is briefly described in Section 7.2. In order to give a concise illustration, we show how

to interpolate call options in Section 7.3. As we shall see, this interpolation substantially lowers

the upper interval level A from (2.8).

Similar work with different models has been carried out by Bergman (1995), and we return to

the connection at the end of Section 7.3. Our reduction of the option value to an optimal stopping

problem, both in Theorem 7.1 and above in Theorem 6.1, mirrors the development in Frey (2000).

Frey’s paper uses the bounds of Avellaneda, Levy and Paras (cf. Assumption 3 (p. 166) in his

paper; the stopping result is Theorem 2.4 (p. 167)). In this context, Frey (2000) goes farther than

the present paper in that it also considers certain types of non-European options. See also Frey

and Sin (1999).
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7.2. Interpolating European payoffs. We first describe the generic case where restrictions

on the volatility and interest rates are given by

Ξ− ≤
∫ T

0
σ2

t dt ≤ Ξ+ and R− ≤
∫ T

0
rudu ≤ R+. (7.1)

We suppose that there market contains a zero coupon bond, there are p market traded derivatives

V
(i)
t (i = 1, ..., p) whose payoffs are fi(ST ) at time T . Again, it is the case that the price for the

dynamic hedge equals the best price for a static hedge in the auxiliary securities, with a dynamic

one in St only:

Theorem 7.1. Under the assumptions above, if one hedges in St, Λt, and the V
(i)
t (i =

1, ..., p), the quantity A0 has the form

A0(f ; f1, ..., fp) = inf
λ1...,λp

A0(f − λ1f1 − ...λpfp) +

p∑

i=1

λiV
(i)
0 , (7.2)

where A0(f − λ1f1 − ...λpfp) is as given by (6.15)-(6.16).

A special case which falls under the above is one where one has a prediction interval for

the volatility of the future S∗ on S. Set S∗
t = St/Λt, and replace equation (2.1) by dS∗

t =

µtS
∗
t dt + σtS

∗
t dW ∗

t . S∗ is then the value of S in numeraire Λ, and the interest rate is zero in this

numeraire. By numeraire invariance, one can now treat the problem in this unit of account. If one

has an interval or the form (6.4), this is therefore the same as the problem posed in the form (7.1),

with R− = R+ = 0. There is no mathematical difference, but (6.4) is an interval for the volatility

of the future S∗ rather than the actual stock price S. This is similar to what happens in Theorem

6.1.

Still with numeraire Λ, the Black-Scholes price is B(S0,Ξ,− log Λ0; f)/Λ0 = B(S∗
0 ,Ξ, 0; f).

In this case, h (from (6.14)) equals f . Theorems 7.1-7.2, Algorithm 7.1, and Corollary 7.3

go through unchanged. For example, equation (6.15) becomes (after reconversion to dollars)

A0(f) = Λ0 supτ Ẽf(S̃τ), where the initial value in (6.16) is S̃0 = S∗
0 = S0/Λ0.
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7.3. The case of European calls.

To simplify our discussion, we shall in the following assume that the short term interest rate

r is known, so that R+ = R− = rT . This case also covers the case of the bound (6.4). We focus

here on the volatility only since this seems to be the foremost concern as far as uncertainty is

concerned. In other words, our prediction interval is

Ξ+ ≥
∫ T

0
σ2

udu ≥ Ξ−. (7.3)

Consider, therefore, the case where one wishes to hedge an option with payoff f0(ST ), where

f0 is (non strictly) convex. We suppose that there are, in fact, market traded call options V
(1)
t and

V
(2)
t with strike prices K1 and K2. We suppose that K1 < K2, and set fi(s) = (s − Ki)

+.

From Theorem 7.1, the price A0 at time 0 for payoff f0(ST ) is

A0(f0; f1, f2) = inf
λ1,λ2

sup
τ

Ẽ (h − λ1h1 − λ2h2)(S̃τ) +

2∑

i=1

λiV
(i)
0 , (7.4)

where, for i = 1, 2, hi(s) = exp{−rT}fi(exp{rT}s) = (s − K ′
i)

+, with K ′
i = exp{−rT}Ki.

We now give an algorithm for finding A0.

For this purpose, let B(S,Ξ, R,K) be as defined in (3.1) for f(s) = (s−K)+ (in other words,

the Black-Scholes-Merton price for a European call with strike price K). Also define, for Ξ ≤ Ξ̃,

B̃(S,Ξ, Ξ̃,K, K̃) = Ẽ((S̃τ − K̃)+ | S0 = S), (7.5)

where τ is the minimum of Ξ̃ and the first time after Ξ that S̃t hits K. An analytic expression for

(7.5) is given as equation (7.15) in Section 7.5.

Algorithm 7.1.

(i) Find the implied volatilities Ξimpl
i of the options with strike price Ki. In other words, B̃(S0,Ξ

impl
i , rT,Ki) =

V
(i)
0 .

(ii) If Ξimpl
1 < Ξimpl

2 , set Ξ1 = Ξimpl
1 , but adjust Ξ2 to satisfy B̃(S0,Ξ

impl
1 ,Ξ2,K

′
1,K

′
2) = V

(2)
0 .

If Ξimpl
1 > Ξimpl

2 , do the opposite, in other words, keep Ξ2 = Ξimpl
2 , and adjust Ξ1 to satisfy

B̃(S0,Ξ
impl
2 ,Ξ1,K

′
2,K

′
1) = V

(1)
0 . If Ξimpl

1 = Ξimpl
2 , leave them both unchanged, i.e., Ξ1 = Ξ2 =
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Ξimpl
1 = Ξimpl

2 .

(iii) Define a stopping time τ as the minimum of Ξ+, the first time S̃t hits K ′
1 after Ξ1, and the

first time S̃t hits K ′
2 after Ξ2. Then A has the form

A0(f0; f1, f2) = Ẽh0(S̃τ ).

Note in particular that if f0 is also a call option, with strike K0, and still with the convention

K ′
0 = exp{−rT}K0, one obtains

A = Ẽ(S̃τ − K ′
0)

+. (7.6)

This is the sense in which one could consider the above an interpolation or even extrapolation: the

strike prices K1 and K2 are given, and K0 can now vary.

Theorem 7.2. Suppose that Ξ− ≤ Ξimpl
1 ,Ξimpl

2 ≤ Ξ+. Then the A0 found in Algorithm 1

coincides with the one given by (7.4). Furthermore, for i = 1, 2,

Ξimpl
i ≤ Ξi. (7.7)

Note that the condition Ξ− ≤ Ξimpl
1 ,Ξimpl

2 ≤ Ξ+ must be satisfied to avoid arbitrage, assuming

one believes the bound (7.3). Also, though Theorem 7.2 remains valid, no-arbitrage considerations

impose constraints on Ξ1 and Ξ2, as follows.

Corollary 7.3. Assume Ξ− ≤ Ξimpl
1 ,Ξimpl

2 ≤ Ξ+. Then Ξ1 and Ξ2 must not exceed Ξ+.

Otherwise there is arbitrage under the condition (7.3).

We prove the algorithm and the corollary in Section 7.5. Note that B̃(S,Ξ, Ξ̃,K, K̃) in (7.5)

is a down-and-out type call for K̃ ≥ K, and can be rewritten as an up-and-out put for K̃ < K,

and is hence obtainable in closed form – cf. equation (7.15) in Section 7.5. A in (7.6) has a

component which is on the form of a double barrier option, so the analytic expression (which can

be found using the methods in Chapter 2.8 (p.94-103) in Karatzas and Shreve (1991)) will involve

an infinite sum (as in ibid, Proposition 2.8.10 (p. 98)). See also Geman and Yor (1996) for analytic



52

expressions. Simulations can be carried out using theory in Asmussen, Glynn and Pitman (1995),

and Simonsen (1997).

The pricing formula does not explicitly involve Ξ−. It is implicitly assumed, however, that

the implied volatilities of the two market traded options exceed Ξ−. Otherwise, there would be

arbitrage opportunities. This, obviously, is also the reason why one can assume that Ξimpl
i ≤ Ξ+

for both i.

How does this work in practice? We consider an example scenario in figures 7.1 and 7.2. We

suppose that market traded calls are sparse, so that there is nothing between K1 = 100 (which is

at the money), and K2 = 160. Figure 7.1 gives implied volatilities of A as a function of the upper

limit Ξ+. Figure 7.2 gives the implied volatilities as a function of K0. As can be seen from the

plots, the savings over using volatility Ξ+ are substantial.

[figures 1 and 2 approximately here]

All the curves in Figure 7.1 have an asymptote corresponding to the implied volatility of the

price Acrit = λ
(0)
1 V

(1)
0 + (1 − λ

(0)
1 )V

(2)
0 , where λ

(0)
1 = (K2 − K0)/(K2 − K1). This is known as the

Merton bound, and holds since, obviously, λ
(0)
1 S

(1)
t + (1− λ

(0)
1 )S

(2)
t dominates the call option with

strike price K0, and is the cheapest linear combination of S
(1)
t and S

(2)
t with this property. In fact,

if one denotes as AΞ+ the quantity from (7.6), and if the Ξimpl
i are kept fixed, it is easy to see that,

for (7.6),

lim
Ξ+→+∞

AΞ+ = Acrit. (7.8)

Figures 7.1 and 7.2 presuppose that the implied volatility of the two market traded options

are the same (
√

Ξimpl
1 =

√
Ξimpl

2 = 0.2). To see what happens when the out of the money option

increases its implied volatility, we fix

√
Ξimpl

1 = 0.2, and we show in the following the plot of
√

Ξ2

as a function of

√
Ξimpl

2 . Also, we give the implied volatilities for the interpolated option (7.6)

with strike price K0 = 140. We see that except for high

√
Ξimpl

2 , there is still gain by a constraint

on the form (7.3).

[figures 3 and 4 approximately here]
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It should be noted that there is similarly between the current paper and the work by Bergman

(1995). This is particularly so in that he finds an arbitrage relationship between the value of two

options (see his Section 3.2 (pp. 488-494), and in particular Proposition 4). Our development,

similarly, finds an upper limit for the price of a third option given two existing ones. As seen in

Corollary 7.3, it can also be applied to the relation between two options only.

The similarly, however, is mainly conceptual, as the model assumptions are substantially

different. An interest rate interval (Bergman’s equations (1)-(2) on p. 478) is obtained by dif-

ferentiating between lending and borrowing rates (as also in Cvitanić and Karatzas (1993)), and

the stock price dynamic is given by differential equations (3)-(4) on p. 479. This is in contrast to

our assumptions (7.1). It is, therefore, hard to compare Bergman’s and our results in other than

conceptual terms.

7.4. The usefulness of interpolation. We have shown in the above that the interpolation

of options can substantially reduce the length of intervals for prices that are generated under

uncertainty in the predicted volatility and interest rates. It would be natural to extend the approach

to the case of several options, and this is partially carried out in Mykland (2005). It is seen in

that paper that there is a state price distribution which gives rise to the bound A for all convex

European options, in a way that incorporates both all traded options and a statistical prediction

interval.

Further research in this area should confront the common reality that the volatility itself is

quite well pinned down, whereas correlations are not. Another interesting question is whether this

kind of nonparametrics can be used in connection with the interest rate term structure, where the

uncertainty about models is particularly acute.

7.5. Proofs for Section 7.

Proof of Theorem 7.1. This result follows in a similar way to the proof of Theorem 6.2, with

the modification that Q∗ is now the set of all probability distributions Q∗ so that (7.1) is satisfied,

so that Λ∗
t and the V

(i)∗
t (i = 1, ..., p) are martingales, and so that dS∗

t = σtS
∗
t dWt, for given S0.
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Before we proceed to the proof of Theorem 7.2, let us establish the following set of inequalities

for Ξ < Ξ̃,

B(S,Ξ, R,K2) < B̃(S,Ξ, Ξ̃,K ′
1,K

′
2) < B(S, Ξ̃, R,K2). (7.9)

The reason for this is that B̃(S,Ξ, Ξ̃,K ′
1,K

′
2) = Ẽ((S̃τ −K ′

2)
+) is nondecreasing in both Ξ and Ξ̃,

since S̃ is a martingale and x → x+ is convex, and also that B̃(S,Ξ,Ξ,K ′
1,K

′
2) = B(S,Ξ, 0,K ′

2) =

B(S,Ξ, R,K2). The inequalities are obviously strict otherwise.

Proof of Theorem 7.2 (and Algorithm 7. 1). We wish to find (7.4).First fix λ1 and λ2, in

which case we are seeking supτ Ẽhλ1,λ2(S̃τ), where hλ1,λ2 = h0 − λ1h1 − λ2h2. This is because

the V
(i)
0 are given. We recall that h0 is (non strictly) convex since f0 has this property, and that

hi(s) = (s − K ′
i)

+. It follows that hλ1,λ2 is convex except at points s = K ′
1 and = K ′

2.

Since S̃t is a martingale, hλ1,λ2(S̃t) is therefore a submartingale so long as S̃t does not cross

K ′
1 or K ′

2 (see Proposition I.3.6 (p. 13) in Karatzas and Shreve (1991)). It follows that if τ0 is a

stopping time, Ξ− ≤ τ0 ≤ Ξ+, and we set

τ = inf{ t ≥ τ0 : S̃t = K ′
1 or K ′

2 } ∧ Ξ+,

then Ẽhλ1,λ2(S̃τ0) ≤ Ẽhλ1,λ2(S̃τ). It follows that the only possible optimal stopping points would

be τ = Ξ+ and τs for which S̃τ = K ′
i for i = 1, 2.

Further inspection makes it clear that the rule must be on the form given in part (iii) of

the algorithm, but with Ξ1 and Ξ2 as yet undetermined. This comes from standard arguments

for American options (see Karatzas (1988), Myneni (1992), and the references therein), as follows.

Define the Snell envelope for hλ1,λ2 by

SE(s,Ξ) = sup
Ξ≤τ≤Ξ+

Ẽ(hλ1,λ2(S̃τ ) | SΞ = s).

The solution for American options is then that

τ = inf{ ξ ≥ Ξ− : SE(S̃ξ, ξ) = hλ1,λ2(S̃ξ) }

Inspection of the preceding formula yields that τ = τ1 ∧ τ2, where

τi = inf{ ξ ≥ Ξ− : { SE(S̃ξ, ξ) = hλ1,λ2(S̃ξ) } ∩ { S̃ξ = K ′
i } } ∧ Ξ+
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= inf{ ξ ≥ Ξ− : { SE(K ′
i, ξ) = hλ1,λ2(K

′
l) } ∩ { S̃ξ = K ′

i } } ∧ Ξ+

= inf{ ξ ≥ Ξi : S̃ξ = K ′
i } ∧ Ξ+,

where Ξi = inf{ ξ ≥ Ξ− : SE(K ′
i, ξ) = hλ1,λ2(K

′
i) } ∧ Ξ+.

Since the system in linear in λ1 and λ2, and in analogy with the discussion in Remark 7.1,

it must be the case that

Ẽ(S̃τ − K ′
i)

+ = V
(i)
0 for i = 1, 2. (7.10)

Hence the form of A0 given in part (iii) of the algorithm must be correct, and one can use (7.10)

to find Ξ1 and Ξ2. Note that the left hand side of (7.10) is continuous and increasing in Ξ1 and Ξ2,

(again since S̃ is a martingale and x → x+ is convex). Combined with our assumption in Theorem

7.2 that Ξ− ≤ Ξimpl
1 ,Ξimpl

2 ≤ Ξ+, we are assured that (7.10) has solutions Ξ1 and Ξ2 in [Ξ−,Ξ+].

Let (Ξ1,Ξ2) be a solution for (7.10) (we have not yet decided what values they take, or even

that they are in the interval [Ξ−,Ξ+]).

Suppose first that Ξ1 < Ξ2.

It is easy to see that

Ẽ[(S̃τ − K ′
1)

+ | S̃Ξ1] = (S̃Ξ1 − K ′
1)

+. (7.11)

This is immediate when S̃Ξ1 ≤ K ′
1; in the opposite case, note that (S̃τ − K ′

1)
+ = S̃τ − K ′

1 when

S̃Ξ1 > K ′
1, and one can then use the martingale property of S̃t. Taking expectations in (7.11)

yields from (7.10) that Ξ1 must be the implied volatility of the call with strike price K1.

Conditioning on FΞ2 is a little more complex. Suppose first that infΞ1≤t≤Ξ2 S̃t > K ′
1. This

is equivalent to τ > Ξ2, whence

Ẽ[(S̃τ − K ′
2)

+ | FΞ2] = (S̃Ξ2 − K ′
2)

+,

as in the previous argument (separate into the two cases S̃Ξ2 ≤ K ′
2 and S̃Ξ2 > K ′

2). Hence,

incorporating the case where τ ≤ Ξ2, we find that

Ẽ(S̃τ − K ′
2)

+ = Ẽ(S̃Ξ2∧τ − K ′
2)

+,
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thus showing that Ξ2 can be obtained from B̃(S0,Ξ
impl
1 ,Ξ2,K

′
1,K

′
2) = V

(2)
0 . In consequence, from

the left hand inequality in (7.9),

B(S0,Ξ
impl
1 , rT,K2) < B̃(S0,Ξ

impl
1 ,Ξ2,K

′
1,K

′
2)

= V
(2)
0 = B(S0,Ξ

impl
2 , rT,K2)

Since, for call options, B(S,Ξ, R,K2) is increasing in Ξ, it follows that Ξimpl
2 > Ξimpl

1 .

Hence, under the assumption that Ξ1 < Ξ2, Algorithm 7.1 produces the right result.

The same arguments apply in the cases Ξ1 > Ξ2 and Ξ1 = Ξ2, in which cases, respectively,

Ξimpl
1 > Ξimpl

2 and Ξimpl
1 = Ξimpl

2 . Hence, also in these cases, Algorithm 7.1 provides the right

solution.

Hence the solution to (7.10) is unique and is given by Algorithm 7.1.

The uniqueness of solution, combined with the above established fact that there are solutions

in [Ξ−,Ξ+], means that our solution must satisfy this constraint. Hence, the rightmost inequality

in (7.7) must hold. The other inequality in (7.7) follows because the adjustment in (ii) increases

the value of of the Ξi that is adjusted. This is because of the rightmost inequality in (7.9).

The result follows.

An analytic expression for equation (7.5).To calculate the expression (7.5), note first that

B̃(S,Ξ, Ξ̃,K, K̃) = Ẽ[B̃(SΞ, 0, Ξ̃ − Ξ,K, K̃)|S0 = S]

We therefore first concentrate on the expression for B̃(s, 0, T,K, K̃). For K < K̃, this is the price

of a down and out call, with strike K̃, barrier K, and maturity T . We are still under the P̃

distribution, in other words, σ = 1 and all interest rates are zero. The formula for this price is

given on p. 462 in Hull (1997), and because of the unusual values of the parameters, one gets

B̃(s, 0, T,K, K̃) = Ẽ((ST − K̃)+|S0 = s) − K̃

K
Ẽ((ST − H)+|S0 = s) +

K̃

K
(s − H)

for s > K, while the value is zero for s ≤ K. Here, H = K2/K̃.

Now set

D(s,Ξ, Ξ̃,K,X) = Ẽ[(S
Ξ̃
− X)+I{SΞ ≥ K}|S0 = s]
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and let BS0 be the Black-Scholes formula for zero interest rate and unit volatility, BS0(s,Ξ,X) = Ẽ[(SΞ−
X)+|S0 = s], in other words,

BS0(s,Ξ,X) = sΦ(d1(s,X,Ξ)) − XΦ(d2(s,X,Ξ)), (7.12)

where Φ is the cumulative standard normal distribution, and

di = di(s,X,Ξ) = (log(s/X)± Ξ/2)/
√

Ξ where ± is + for i = 1 and − for i = 2. (7.13)

Then, for K < K̃,

B̃(s,Ξ, Ξ̃,K, K̃) = D(s,Ξ, Ξ̃,K, K̃) − K̃

K
D(s,Ξ, Ξ̃,K,H) +

K̃

K
BS0(s,Ξ,K)

+ (K̃ − K)Φ(d2(s,K,Ξ)). (7.14)

Similarly, for K ≥ K̃, a martingale argument and the formula on p. 463 in Hull (1997) gives that

B̃(s, 0, T,K, K̃) = s − K̃ + value of up and out put option with strike K̃ and barrier K

= Ẽ((ST − K̃)+|S0 = s) − value of up and in put option with strike K̃

and barrier K

= Ẽ((ST − K̃)+|S0 = s) − K̃

K
Ẽ((ST − H)+|S0 = s) for s < K.

On the other hand, obviously, for s ≥ K, B̃(s, 0, T,K, K̃) = (s − K̃) by a martingale

argument.

Hence, for K ≥ K̃, we get

B̃(s,Ξ, Ξ̃,K, K̃) = BS0(s, Ξ̃, K̃) − K̃

K
BS0(s, Ξ̃,H) − D(s,Ξ, Ξ̃,K, K̃)

+
K̃

K
D(s,Ξ, Ξ̃,K,H) + BS0(s,Ξ,K) + (K − K̃)Φ(d2(s,K,Ξ)). (7.15)

The formula for D is

D(s,Ξ, Ξ̃,K,X) = sΦ(d1(s,X, Ξ̃), d1(s,K,Ξ);Σ) − XΦ(d2(s,X, Ξ̃), d2(s,K,Ξ);Σ), (7.16)
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where

Φ(x, y; Σ) = cumulative bivariate normal c.d.f. with covariance matrix Σ (7.17)

and Σ is the matrix with diagonal elements 1 and off diagonal elements ρ,

ρ =

√
Ξ

Ξ̃
. (7.18)

Proof of Corollary 7.3. It is easy to see that Theorem 7.2 goes through with K1 = K2 (in

the case where the implied volatilities are the same). Using formula (7.7), we get from Algorithm

7.1 that

A((s − K0)
+; (s − K1)

+) = C̃(S0,Ξ
impl
1 ,Ξ+,K ′

1,K
′
1). (7.19)

The result then follows by replacing “0” by “2” in (7.19).

8. Bounds that are not based on prediction sets. It may seem odd to argue, as we

have in Section 5.3, for an approach that uses different models for inference and trading, even if

the first is nested in the other. To see it in context, recall that we referred to this procedure as the

decoupled prediction approach. Now consider two alternative devices. One is a consistent prediction

approach: use the prediction region obtained above, but also insist for purposes of trading that

P ∈ Θ. Another alternative would be to find a confidence or credible set Θ̂ ⊆ Θ, and then do a

super-replication that is valid for all P ∈ Θ̂. The starting values for these schemes are considered

below.

Table 4 suggests the operation of the three schemes.
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Table 4

Three approaches for going from data to hedging strategies

approach product of hedging is valid and
statistical analysis solvent for

confidence or set Θ̂ of probabilities probabilities in Θ̂
credible sets

consistent prediction set C of possible outcomes probabilities in Θ
set method outcomes in C

decoupled prediction set C of possible outcomes probabilities in Q
set method outcomes in C

Θ is the parameter space used in the statistical analysis, which can be parametric or nonparametric.

Q is the set of distributions defined in Assumption (A). C is a prediction set, and Θ̂ is a confidence

or credible set.

The advantages of the decoupled prediction set approach are the following. First, trans-

parency. It is easy to monitor, en route, how good the set is. For example, in the case of (2.3), one

can at any time t see how far the realized
∫ t
0 σ2

udu (or, rather, the estimated volatility Ξ̂t in Section

3.4) is from the prediction limits Ξ− and Ξ+. This makes it easy for both traders and regulators to

anticipate any disasters, and, if possible, to take appropriate action (such as liquidating the book).

Second, the transparency of the procedure makes this approach ideal as an exit strategy

when other schemes have gone wrong. This can be seen from the discussion in Section 2.3.

Thirdly, and perhaps most importantly, the decoupling of the inferential and trading models

respects how these two activities are normally carried out. The statistician’s mandate is, usually,

to find a model Θ, and to estimate parameters, on the basis of whether these reasonably fit the

data. This is different from finding a structural model of asset prices, one which also works well

for trading. For example, consider modeling interest rates with an Ornstein-Uhlenbeck process.

In many cases, this will give a perfectly valid fit to the data. For trading purposes, however, this

model has severe drawbacks, as outlined in Section 6.2 above.
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The gold standard, of course, is to look for good structural asset price models, and this is an

ongoing topic of research, cf. many of the references in the Introduction. One should not, however,

expect market participants to always use such models. Furthermore, the possibility of regime shifts

somewhat curtails the predictive power of most models in finance.

With the decoupling of the two stages the statistical process can concentrate on good infer-

ence, without worrying about the consequences of the model on trading. For inference, one can

use the econometrics literature cited at the end of the Introduction, and new methods become

available over time.

To sum up, the decoupled prediction set approach is, in several ways, robust.

Is it efficient? The other two approaches, by using the model Θ for both stages, would seem

to give rise to lower starting values A0, just by being consistent and by using a smaller family Θ for

trading. We have not investigated this question in any depth, but tentative evidence suggests that

the consistent prediction approach will yield a cheaper A0, while the confidence/credible approach

is less predictable in this respect. Consider the following.

Using Kramkov (1996) and Mykland (2000), one can obtain the starting value for a true

super-replication over a confidence/credible set Θ̂ for conditional probabilities Pω. Assume the

nesting condition. Let Θ̂∗ be the convex hull of distributions Q∗ ∈ Q∗ for which Q∗ is mutually

absolutely continuous with a Pω ∈ Θ̂. The starting value for the super-replication would then

normally have the form

A0 = sup{E∗(η∗) : P ∗ ∈ Θ̂∗}.

Whether this A0 is cheaper than the one from (5.3) may, therefore, vary according to Θ and to the

data. This is because Θ̂∗, and P∗ = P∗
S0

from (5.2), are not nested one in the other, either way.

For the consistent prediction approach, we have not investigated how one can obtain a result

like Theorem 5.1 for subsets of Q, so we do not have an explicit expression for A0. However,

the infimum in (2.5) is with respect to a smaller class of probabilities, and hence a larger class of

super-replications on C. The resulting price, therefore, can be expected to be smaller than the

conservative ask price from (5.2). As outlined above, however, this approach is not as robust as

the one we have been advocating.
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Äıt-Sahalia, Y. (1996). Nonparametric Pricing of Interest Rate Derivative Securities. Econometrica

64 527-560.
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Figure 7.1. Effect of interpolation: Implied volatilities for interpolated call options as a

function of the upper limit of the prediction interval.
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We consider various choices of strike price K0 (from top to bottom: K0 is 130, 120 and 110)

for the option to be interpolated. The options that are market traded have strike prices K1 = 100

and K2 = 160. The graph shows the implied volatility of the options price A (σimpl given by

B(S0, σ
2
impl, rT,K0) = A as a function of

√
Ξ+. We are using square roots as this is the customary

reporting form. The other values defining the graph are S0 = 100, T = 1 and r = 0.05, and√
Ξimpl

1 =

√
Ξimpl

2 = .2. The asymptotic value of each curve corresponds to the Merton bound for

that volatility.
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Figure 7.2. Effect of interpolation: implied volatilities for interpolated call options as a

function of the strike price K0 for the option to be interpolated.
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Figure 7.3. C̃:
√

Ξ2 as a function of
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2 , for fixed
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1 =
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Figure 7.4. Implied volatility for interpolated call option with strike price K0 = 140, as

the upper bound
√

Ξ+ varies.
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0.3, 0.35 and 0.4. The starting point for each curve is the value
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Ξ+ (on the x axis) so that the

no-arbitrage condition of Corollary 7.3 is not violated. As in Figure 7.1, the asymptotic value of

each curve corresponds to the Merton bound for that volatility.


